Background And Purpose: Therapeutic angiogenesis aims at improving cerebral blood flow by amplification of vascular sprouting, thus promoting tissue survival under conditions of subsequent ischemia. It remains unknown whether induced angiogenesis leads to the formation of functional vessels that indeed result in hemodynamic improvements. Observations of hemodynamic steal phenomena and disturbed neurovascular integrity after vascular endothelial growth factor delivery questioned the concept of therapeutic angiogenesis.

Methods: Mice were treated with recombinant human vascular endothelial growth factor (0.02 μg/d; intracerebroventricular) for 3 to 21 days and subsequently exposed to 90-minute middle cerebral artery occlusion. Angiogenesis, histological brain injury, IgG extravasation, cerebral blood flow, protein synthesis and energy state, and pericyte coverage on brain capillaries were evaluated in a multiparametric approach combining histochemical, autoradiographic, and regional bioluminescence techniques.

Results: Vascular endothelial growth factor increased brain capillary density within 10 days and reduced infarct volume and inflammation after subsequent middle cerebral artery occlusion, and, when delivered for prolonged periods of 21 days, enhanced postischemic blood-brain barrier integrity. Increased cerebral blood flow was noted in ischemic brain areas exhibiting enhanced angiogenesis and was associated with preservation of the metabolic penumbra, defined as brain tissue in which protein synthesis has been suppressed but ATP preserved. Vascular endothelial growth factor enhanced pericyte coverage of brain endothelial cells via mechanisms involving increased N-cadherin expression on cerebral microvessels.

Conclusions: That cerebral blood flow is increased during subsequent ischemic episodes, leading to the stabilization of cerebral energy state, fosters hope that by promoting new vessel formation brain tissue survival may be improved.

Download full-text PDF

Source
http://dx.doi.org/10.1161/STROKEAHA.111.000240DOI Listing

Publication Analysis

Top Keywords

vascular endothelial
20
endothelial growth
20
growth factor
20
cerebral blood
20
blood flow
20
pericyte coverage
12
coverage brain
12
cerebral
10
brain
8
brain capillaries
8

Similar Publications

Triple negative breast cancers often contain higher numbers of tumour-infiltrating lymphocytes compared with other breast cancer subtypes, with their number correlating with prolonged survival. Since little is known about tumour-infiltrating lymphocyte trafficking in triple negative breast cancers, we investigated the relationship between tumour-infiltrating lymphocytes and the vascular compartment to better understand the immune tumour microenvironment in this aggressive cancer type. We aimed to identify mechanisms and signaling pathways responsible for immune cell trafficking in triple negative breast cancers, specifically of basal type, that could potentially be manipulated to change such tumours from immune "cold" to "hot" thereby increasing the likelihood of successful immunotherapy in this challenging patient population.

View Article and Find Full Text PDF

Supramolecular Engineering of Nanoceria for Management and Amelioration of Age-Related Macular Degeneration via the Two-Level Blocking of Oxidative Stress and Inflammation.

Adv Sci (Weinh)

January 2025

Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Zhejiang University, 88 Jiefang Road, Hangzhou, 310009, China.

Age-related macular degeneration (AMD), characterized by choroidal neovascularization (CNV), is the global leading cause of irreversible blindness. Current first-line therapeutics, vascular endothelial growth factor (VEGF) antagonists, often yield incomplete and suboptimal vision improvement, necessitating the exploration of novel and efficacious therapeutic approaches. Herein, a supramolecular engineering strategy to construct moringin (MOR) loaded α-cyclodextrin (α-CD) coated nanoceria (M@CCNP) is constructed, where the hydroxy and newly formed carbonyl groups of α-CD interact with the nanoceria surface via O─Ce conjunction and the isothiocyanate group of MOR inserts deeply into the α-CD cavity via host-guest interaction.

View Article and Find Full Text PDF

Skin-Integrated Electrogenetic Regulation of Vasculature for Accelerated Wound Healing.

Adv Sci (Weinh)

January 2025

ETH Zurich, Department of Biosystems Science and Engineering, Klingelbergstrasse 48, Basel, CH-4056, Switzerland.

Neo-vascularization plays a key role in achieving long-term viability of engineered cells contained in medical implants used in precision medicine. Moreover, strategies to promote neo-vascularization around medical implants may also be useful to promote the healing of deep wounds. In this context, a biocompatible, electroconductive borophene-poly(ε-caprolactone) (PCL) 3D platform is developed, which is called VOLT, to support designer cells engineered with a direct-current (DC) voltage-controlled gene circuit that drives secretion of vascular endothelial growth factor A (VEGFA).

View Article and Find Full Text PDF

A hallmark of chronic and inflammatory diseases is the formation of a fibrotic and stiff extracellular matrix (ECM), typically associated with abnormal, leaky microvascular capillaries. Mechanisms explaining how the microvasculature responds to ECM alterations remain unknown. Here, we used a microphysiological model of capillaries on a chip mimicking the characteristics of healthy or fibrotic collagen to test the hypothesis that perivascular cells mediate the response of vascular capillaries to mechanical and structural changes in the human ECM.

View Article and Find Full Text PDF

Objective: Gliomas are a general designation for neuroepithelial tumors derived from the glial cells of the central nervous system. According to the histopathological and immunohistochemical features, the World Health Organization classifies gliomas into four grades. Bevacizumab is a monoclonal antibody targeting vascular endothelial growth factor that has been approved for the treatment of glioblastoma multiforme (GBM) as a second-line therapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!