WalK, a histidine kinase, and WalR, a response regulator, make up a two-component signal transduction system that is indispensable for the cell-wall metabolism of low GC Gram-positive bacteria. WalK inhibitors are likely to show bactericidal effects against methicillin-resistant Staphylococcus aureus . We discovered a new WalK inhibitor, designated waldiomycin, by screening metabolites from actinomycetes. Waldiomycin belongs to the family of angucycline antibiotics and is structurally related to dioxamycin. Waldiomycin inhibits WalK from S. aureus and Bacillus subtilis at IC50s 8.8 and 10.2 μM, respectively, and shows antibacterial activity with MICs ranging from 4 to 8 μg ml(-1) against methicillin-resistant S. aureus and B. subtilis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/ja.2013.33 | DOI Listing |
J Antibiot (Tokyo)
August 2024
SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Osaka, Japan.
Waldiomycin is an inhibitor of histidine kinases (HKs). Although most HK inhibitors target the ATP-binding region, waldiomycin binds to the intracellular dimerization domain (DHp domain) with its naphthoquinone moiety presumed to interact with the conserved H-box region. To further develop inhibitors targeting the H-box, various 2-aminonaphthoquinones with cyclic, aliphatic, or aromatic amino groups and naphtho [2,3-d] isoxazole-4,9-diones were synthesized.
View Article and Find Full Text PDFJ Proteomics
February 2022
Department of Human Nutrition, Faculty of Human Sciences, Hiroshima Bunkyo University, Kabehigashi 1-2-1, Asakita-ku, Hiroshima 731-0295, Japan. Electronic address:
In a bacterial two-component system (TCS), signals are generally conveyed by means of a His-Asp phosphorelay. Each system consists of a histidine kinase (HK) and its cognate response regulator (RR). The His- and Asp-bound phosphate groups are extremely unstable under acidic conditions easily to be hydrolyzed within a few hours.
View Article and Find Full Text PDFPLoS One
August 2020
Kayyali Chair, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
Bacterial histidine kinases (HKs) are considered attractive drug targets because of their ability to govern adaptive responses coupled with their ubiquity. There are several classes of HK inhibitors; however, they suffer from drug resistance, poor bioavailability, and a lack of selectivity. The 3D structure of Staphylococcus aureus HK was not isolated in high-resolution coordinates, precluding further disclosure of structure-dependent binding to the specific antibiotics.
View Article and Find Full Text PDFAnal Biochem
July 2020
Department of Functional Molecular Science, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
Two-component signal transduction systems (TCSs), consisting of a histidine kinase (HK) and its cognate response regulator, are ubiquitous among bacteria and are associated with the virulence of pathogens. TCSs are potential targets for alternative antibiotics and antivirulence agents. It is, thus, very important to determine HK activity in bacterial TCSs.
View Article and Find Full Text PDFElectrophoresis
November 2019
Department of Functional Molecular Science, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
In the bacterial signaling mechanisms known as two-component systems (TCSs), signals are generally conveyed by means of a His-Asp phosphorelay. Each system consists of a histidine kinase (HK) and its cognate response regulator. Because of the labile nature of phosphorylated His and Asp residues, few approaches are available that permit a quantitative analysis of their phosphorylation status.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!