We report an efficient transfer of 800 nm energy into both the ultraviolet and the far infrared (IR) during the filamentation in air of an appropriately shaped laser pulse. The multiorder enhancement of the IR supercontinuum in the 3-5 μm atmospheric transmission windows was achieved thanks to spectral-step cascaded four-wave mixing occurring within the spectrum of the shaped femtosecond laser pulse. These results also point out the limit of the self-phase modulation model to explain the spectral broadening of a filamenting laser pulse.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.38.001576 | DOI Listing |
Cureus
December 2024
Department of Dental Sciences, Faculty of Medicine, University of Liege, Liege, BEL.
Background Fracture of nickel-titanium (Ni-Ti) instruments in root canals is commonly associated with compromised outcomes in endodontic treatment. There is no single, universally accepted approach for managing this complication. The objective of this study is to evaluate the effectiveness of an Nd: YAP laser-assisted protocol in removing fractured Ni-Ti files in teeth with minimal root curvature (less than 15 degrees).
View Article and Find Full Text PDFLight Sci Appl
January 2025
State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Institute of Nanoscience and Applications, Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, China.
Colloidal quantum dots (CQDs) are attractive gain media due to their wavelength-tunability and low optical gain threshold. Consequently, CQD lasers, especially the surface-emitting ones, are promising candidates for display, sensing and communication. However, it remains challenging to achieve a low-threshold surface-emitting CQD laser array with high stability and integration density.
View Article and Find Full Text PDFRev Sci Instrum
January 2025
University of Dayton Research Institute, Dayton, Ohio 45469, USA.
A method to determine electron temperature within a plasma by the spectral analysis of atomic tungsten emission has been explored. The technique was applied to a post-discharge region immediately following a high voltage nanosecond pulsed discharge in air with tungsten electrodes. Atomic tungsten lines are readily observed in the weak emission spectrum within the post-discharge region for many microseconds.
View Article and Find Full Text PDFPurpose: The aim of the current study was to evaluate changes in choroidal circulation hemodynamics after periocular skin warming at 40°C using laser speckle flowgraphy (LSFG).
Methods: Twenty-four right eyes of 24 healthy participants were included. Changes in choroidal circulation hemodynamics were determined using LSFG to evaluate the mean blur rate (MBR) of the macula, which represents choroidal blood flow velocity.
Photoacoustics
February 2025
Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA.
Recent advances in Light Emitting Diode (LED) technology have enabled a more affordable high frame rate photoacoustic imaging (PA) alternative to traditional laser-based PA systems that are costly and have slow pulse repetition rate. However, a major disadvantage with LEDs is the low energy outputs that do not produce high signal-to-noise ratio (SNR) PA images. There have been recent advancements in integrating deep learning methodologies aimed to address the challenge of improving SNR in LED-PA images, yet comprehensive evaluations across varied datasets and architectures are lacking.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!