Background: We examined the potential of metformin (MET) to enhance non-small cell lung cancer (NSCLC) responses to ionising radiation (IR).
Methods: Human NSCLC cells, mouse embryonic fibroblasts from wild-type and AMP-activated kinase (AMPK) α1/2-subunit(-/-) embryos (AMPKα1/2(-/-)-MEFs) and NSCLC tumours grafted into Balb/c-nude mice were treated with IR and MET and subjected to proliferation, clonogenic, immunoblotting, cell cycle and apoptosis assays and immunohistochemistry (IHC).
Results: Metformin (2.5 μM-5 mM) inhibited proliferation and radio-sensitised NSCLC cells. Metformin (i) activated the ataxia telengiectasia-mutated (ATM)-AMPK-p53/p21(cip1) and inhibited the Akt-mammalian target of rapamycin (mTOR)-eIF4E-binding protein 1 (4EBP1) pathways, (ii) induced G1 cycle arrest and (iii) enhanced apoptosis. ATM inhibition blocked MET and IR activation of AMPK. Non-small cell lung cancer cells with inhibited AMPK and AMPKα1/2(-/-)-MEFs were resistant to the antiproliferative effects of MET and IR. Metformin or IR inhibited xenograft growth and combined treatment enhanced it further than each treatment alone. Ionising radiation and MET induced (i) sustained activation of ATM-AMPK-p53/p21(cip1) and inhibition of Akt-mTOR-4EBP1 pathways in tumours, (ii) reduced expression of angiogenesis and (iii) enhanced expression of apoptosis markers.
Conclusion: Clinically achievable MET doses inhibit NSCLC cell and tumour growth and sensitise them to IR. Metformin and IR mediate their action through an ATM-AMPK-dependent pathway. Our results suggest that MET can be a clinically useful adjunct to radiotherapy in NSCLC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3670487 | PMC |
http://dx.doi.org/10.1038/bjc.2013.187 | DOI Listing |
Eur J Med Chem
January 2025
Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Healthand, Department of Frontiers Science Center for Disease-related Molecular Network, Core Facilities, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China. Electronic address:
NEK2, a serine/threonine protein kinase, is integral to mitotic events such as centrosome duplication and separation, microtubule stabilization, spindle assembly checkpoint, and kinetochore attachment. However, NEK2 overexpression leads to centrosome amplification and chromosomal instability, which are significantly associated with various malignancies, including liver, breast, and non-small cell lung cancer. This overexpression could facilitate tumor development and confer resistance to therapy by promoting aberrant cell division and centrosome amplification.
View Article and Find Full Text PDFNeoplasma
December 2024
Department of Oncology, First Faculty of Medicine, Charles University and Thomayer University Hospital, Prague, Czech Republic.
The objective of this study was to investigate the prognostic significance of the frequency of primary cilia (PC) and β-catenin expression in 218 patients (pts) with non-small cell lung cancer (NSCLC), including 125 pts with adenocarcinoma and 93 pts with squamous cell carcinoma. In the whole group of 218 pts with NSCLC, overall survival (OS) was significantly inferior among pts with present PC than without PC (p=0.024) and with higher cytoplasmic β-catenin expression (25-75%) than with lower cytoplasmic β-catenin expression (<25%) (p=0.
View Article and Find Full Text PDFNeoplasma
December 2024
Department of Clinical and Molecular Pathology and Medical Genetics, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic.
DNA methylation is recognized as an early event in cancer initiation and progression. This review aimed to compare the methylation status of promoter regions in selected genes across different histological subtypes of non-small cell lung cancer (NSCLC), including adenocarcinoma, squamous cell carcinoma, large cell carcinoma, and the rare but highly aggressive large-cell neuroendocrine carcinoma (LCNEC). A comprehensive literature search was conducted in the PubMed database until August 17, 2024, using standardized keywords to identify reports on promoter methylation in NSCLC.
View Article and Find Full Text PDFAppl Biochem Biotechnol
January 2025
Department of Oncology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, No.71 Baoshan North Road, Yunyan District, Guiyang City, 550001, Guizhou Province, China.
Circular RNAs (circRNAs), along with their pathogenic property in non-small cell lung cancer (NSCLC), require comprehensive analyses and explanations. The study is established with the purpose to elucidate the potential molecular mechanism of circATP9A in NSCLC. CircATP9A and microRNA (miR)-582-3p were evaluated by real-time quantitative polymerase chain reaction, and ribosomal protein large P0 (RPLP0), cleaved caspase-3, cleaved Ki-67, epithelial-to-mesenchymal transition (EMT)-associated proteins (N-cadherin and E-cadherin), and core proteins of the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) pathway were by Western blot.
View Article and Find Full Text PDFMol Divers
January 2025
School of Pharmacy, Shandong Second Medical University, Weifang, 261053, Shandong, People's Republic of China.
Non-small cell lung cancer (NSCLC) is the most common type of lung cancer, often linked to overexpression or abnormal activation of the epidermal growth factor receptor (EGFR). The issue of developing resistance to third-generation EGFR kinase inhibitors, such as osimertinib, underscores the urgent need for new therapies to overcome this resistance. Our findings revealed that compound A8 exhibits 88.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!