Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Polyurethanes (PUs) are formed by a reaction between isocyanates and diols to yield polymers with urethane bonds (-NH-COO-) in their main chain. A great variety of building blocks is commercially available that allows the chemical and physical properties of PUs to be tailored to their target applications, particularly for the biomedical and pharmaceutical fields. This article reviews the synthesis and characterization of PUs and PU-copolymers, as well as their in vitro and in vivo biodegradability and biocompatibility. Particular emphasis is placed on the use of PUs for the controlled release of drugs and for the (targeted) delivery of biotherapeutics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijpharm.2013.04.063 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!