Background: hiPSCs are generated through epigenetic reprogramming of somatic tissue. Genomic imprinting is an epigenetic phenomenon through which monoallelic gene expression is regulated in a parent-of-origin-specific manner. Reprogramming relies on the successful erasure of marks of differentiation while maintaining those required for genomic imprinting. Loss of imprinting (LOI), which occurs in many types of malignant tumors, would hinder the clinical application of hiPSCs.

Results: We examined the imprinting status, expression levels and DNA methylation status of eight imprinted genes in five independently generated hiPSCs. We found a low frequency of LOI in some lines. Where LOI was identified in an early passage cell line, we found that this was maintained through subsequent passages of the cells. Just as normal imprints are maintained in long-term culture, this work suggests that abnormal imprints are also stable in culture.

Conclusions: Analysis of genomic imprints in hiPSCs is a necessary safety step in regenerative medicine, with relevance both to the differentiation potential of these stem cells and also their potential tumorigenic properties.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3751563PMC
http://dx.doi.org/10.1186/1471-2156-14-32DOI Listing

Publication Analysis

Top Keywords

genomic imprinting
12
stem cells
8
imprinting
5
stability genomic
4
imprinting human
4
human induced
4
induced pluripotent
4
pluripotent stem
4
cells background
4
background hipscs
4

Similar Publications

Heterodisomy in the locus is also a cause of pseudohypoparathyroidism type 1B (iPPSD3).

Front Endocrinol (Lausanne)

December 2024

Rare Disease Research Group, Molecular (Epi) Genetics Laboratory, Bioaraba Health Research Institute, Araba University Hospital, Vitoria-Gasteiz, Spain.

Objective: To identify the genetic cause underlying the methylation defect in a patient with clinical suspicion of PHP1B/iPPSD3.

Design: Imprinting is an epigenetic mechanism that allows the regulation of gene expression. The locus is one of the loci within the genome that is imprinted.

View Article and Find Full Text PDF

DNA methylation is an essential epigenetic mechanism for regulation of gene expression, through which many physiological (X-chromosome inactivation, genetic imprinting, chromatin structure and miRNA regulation, genome defense, silencing of transposable elements) and pathological processes (cancer and repetitive sequences-associated diseases) are regulated. Nanopore sequencing has emerged as a novel technique that can analyze long strands of DNA (long-read sequencing) without chemically treating the DNA. Interestingly, nanopore sequencing can also extract epigenetic status of the nucleotides (including both 5-Methylcytosine and 5-hydroxyMethylcytosine), and a large variety of bioinformatic tools have been developed for improving its detection properties.

View Article and Find Full Text PDF

Cytidine analogs in plant epigenetic research and beyond.

J Exp Bot

December 2024

Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany, Czech Acad Sci, Šlechtitelů 31, Olomouc 77900, Czech Republic.

Cytosine (DNA) methylation plays important roles in silencing transposable elements, plant development, genomic imprinting, stress responses, and maintenance of genome stability. To better understand the functions of this epigenetic modification, several tools have been developed to manipulate DNA methylation levels. These include mutants of DNA methylation writers and readers, targeted manipulation of locus-specific methylation, and the use of chemical inhibitors.

View Article and Find Full Text PDF

Background: Current clinical sequencing methods cannot effectively detect DNA methylation and allele-specific variation to provide parent-of-origin information from the proband alone. Parent-of-origin effects can lead to differential disease and the inability to assign this in de novo cases limits prognostication in the majority of affected individuals with retinoblastoma, a hereditary cancer with suspected parent-of-origin effects.

Methods: To directly assign parent-of-origin in retinoblastoma patients, genomic DNA was extracted from blood samples for sequencing using a programmable, targeted single-molecule long-read DNA genomic and epigenomic approach.

View Article and Find Full Text PDF

[Epigenetic reprogramming, germline and genomic imprinting].

Med Sci (Paris)

December 2024

IGMM, Univ Montpellier, CNRS, Montpellier, France.

The memory of cellular identity is crucial for the correct development of an individual and is maintained throughout life by the epigenome. Chromatin marks, such as DNA methylation and histone modifications, ensure the stability of gene expression programmes over time and through cell division. Loss of these marks can lead to severe pathologies, including cancer and developmental syndromes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!