Estimating net anthropogenic nitrogen inputs to U.S. watersheds: comparison of methodologies.

Environ Sci Technol

Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York 14853, United States.

Published: May 2013

The net anthropogenic nitrogen input (NANI) approach is a simple quasi-mass-balance that estimates the human-induced nitrogen inputs to a watershed. Across a wide range of watersheds, NANI has been shown to be a good predictor of riverine nitrogen export. In this paper, we review various methodologies proposed for NANI estimation since its first introduction and evaluate alternative calculations suggested by previous literature. Our work is the first study in which a consistent NANI calculation method is applied across the U.S. watersheds and tested against available riverine N flux estimates. Among the tested methodologies, yield-based estimation of agricultural N fixation (instead of crop area-based) made the largest difference, especially in some Mississippi watersheds where the tile drainage was a significant factor reducing watershed N retention. Across the U.S. watersheds, NANI was particularly sensitive to farm N fertilizer application, cattle N consumption, N fixation by soybeans and alfalfa, and N yield by corn, soybeans, and pasture, although their relative importance varied among different regions.

Download full-text PDF

Source
http://dx.doi.org/10.1021/es303437cDOI Listing

Publication Analysis

Top Keywords

net anthropogenic
8
anthropogenic nitrogen
8
nitrogen inputs
8
watersheds nani
8
watersheds
5
nani
5
estimating net
4
nitrogen
4
inputs watersheds
4
watersheds comparison
4

Similar Publications

Influence of precipitation and temperature variability on anthropogenic nutrient inputs in a river watershed: Implications for environmental management.

J Environ Manage

January 2025

Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, China; State Key Laboratory of Wetland Conservation and Restoration, School of Environment, Beijing Normal University, Beijing, 100875, China; Key Laboratory of Coastal Water Environmental Management and Water Ecological Restoration of Guang-dong Higher Education Institutes, Beijing Normal University, Zhuhai, 519087, China.

Article Synopsis
  • Since the Industrial Revolution, human activities have greatly increased nitrogen and phosphorus levels in river watersheds, especially influenced by climate change.
  • This study focused on the Dawen River Watershed in China from 2000 to 2021, analyzing the Net Anthropogenic Nitrogen Input (NANI) and Net Anthropogenic Phosphorus Input (NAPI) to assess their response to climate factors.
  • The findings indicated a decreasing trend in nitrogen input and a fluctuating trend for phosphorus, primarily driven by fertilizer use, while precipitation positively correlated with nutrient inputs and temperature had mixed effects.
View Article and Find Full Text PDF

Biophysical impact of forest age changes on land surface temperature in China.

Sci Total Environ

January 2025

School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China.

Forest age structures have been substantially affected by natural disturbances and anthropogenic activities worldwide. Their changes can significantly influence local and nonlocal climate through both the biogeochemical and biophysical processes. However, numerous studies have focused on the biogeochemical effect of forest age changes whereas the biophysical effect has received far less attention.

View Article and Find Full Text PDF

In recent decades, global change and local anthropogenic pressures have severely affected natural ecosystems and their biodiversity. Although disentangling the effects of these factors is difficult, they are reflected in changes in the functional composition of plant communities. We present a comprehensive, large-scale analysis of long-term changes in plant communities of various non-forest habitat types in the Czech Republic based on 1154 vegetation-plot time series from 53 resurvey studies comprising 3909 vegetation-plot records.

View Article and Find Full Text PDF

Assessing the potential effects of climate change on the morphodynamics of the tropical coral reef islands in the Gulf of Mannar, Indian Ocean.

J Environ Manage

January 2025

Physical Oceanography Division, CSIR- National Institute of Oceanography, Dona Paula, 403 004, Goa, India; School of Oceanography, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India. Electronic address:

Low-lying and small tropical coral reef islands around the world are extremely vulnerable to the effects of global environmental change caused by the combination of anthropogenic climate change and escalating extreme hydrodynamic events. Erosion and inundation are anticipated to physically destabilize the tropical coral reef islands, rendering them uninhabitable within the next century. Therefore, it is crucial to assess the repercussions of these hazardous events on the delicate reef island ecosystem in order to conserve and ensure sustainable management.

View Article and Find Full Text PDF

Impacts of different intensities of commercial Sphagnum moss extraction on CO fluxes in a northern Patagonia peatland.

Sci Total Environ

January 2025

Department of Forest Sciences, Faculty of Agricultural and Environmental Sciences, Universidad de La Frontera, Temuco, Chile.

Peatlands are key ecosystems for global climate regulation because they provide the most efficient carbon sink on the planet. Despite this, they have been widely degraded by various anthropogenic disturbances, causing imbalances in their ecological functioning. A more recent type of disturbance corresponds to the commercial extraction of Sphagnum mosses, which has been carried out in temperate peatlands distributed in Australasia and Patagonia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!