Cortical information flow in Parkinson's disease: a composite network/field model.

Front Comput Neurosci

Department of Physiology and Pharmacology, State University of New York Downstate Medical Center Brooklyn, NY, USA ; School of Physics, University of Sydney NSW, Australia ; Brain Dynamics Centre, Westmead Millennium Institute Westmead, NSW, Australia.

Published: May 2013

The basal ganglia play a crucial role in the execution of movements, as demonstrated by the severe motor deficits that accompany Parkinson's disease (PD). Since motor commands originate in the cortex, an important question is how the basal ganglia influence cortical information flow, and how this influence becomes pathological in PD. To explore this, we developed a composite neuronal network/neural field model. The network model consisted of 4950 spiking neurons, divided into 15 excitatory and inhibitory cell populations in the thalamus and cortex. The field model consisted of the cortex, thalamus, striatum, subthalamic nucleus, and globus pallidus. Both models have been separately validated in previous work. Three field models were used: one with basal ganglia parameters based on data from healthy individuals, one based on data from individuals with PD, and one purely thalamocortical model. Spikes generated by these field models were then used to drive the network model. Compared to the network driven by the healthy model, the PD-driven network had lower firing rates, a shift in spectral power toward lower frequencies, and higher probability of bursting; each of these findings is consistent with empirical data on PD. In the healthy model, we found strong Granger causality between cortical layers in the beta and low gamma frequency bands, but this causality was largely absent in the PD model. In particular, the reduction in Granger causality from the main "input" layer of the cortex (layer 4) to the main "output" layer (layer 5) was pronounced. This may account for symptoms of PD that seem to reflect deficits in information flow, such as bradykinesia. In general, these results demonstrate that the brain's large-scale oscillatory environment, represented here by the field model, strongly influences the information processing that occurs within its subnetworks. Hence, it may be preferable to drive spiking network models with physiologically realistic inputs rather than pure white noise.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3635017PMC
http://dx.doi.org/10.3389/fncom.2013.00039DOI Listing

Publication Analysis

Top Keywords

basal ganglia
12
field model
12
model
10
cortical flow
8
parkinson's disease
8
network model
8
model consisted
8
field models
8
based data
8
data healthy
8

Similar Publications

Background: The clinical characteristics of major depressive disorder (MDD) in adolescents show notable gender-related differences, but the cause of these differences is still not understood. The current research concentrates on the changes in neurometabolism and neuroendocrine function, aiming to identify differences in endocrine function and brain metabolism between male and female adolescents with MDD.

Methods: A total of 121 teenagers diagnosed with MDD (43 males and 78 females) were enlisted as participants.

View Article and Find Full Text PDF

Temporal lobe epilepsy (TLE) can cause different types of memory impairments. Here, we report a case of immediate improvement of memory impairment following antiepileptic drug (AED) treatment in a patient with TLE with amygdala enlargement (TLE-AE), who rapidly developed recurrence. The patient was a man in his 60s whose family members complained of his amnesia.

View Article and Find Full Text PDF

Alcohol consumption is known to affect dopamine (DA) release in the brain, with significant implications for understanding addiction and its neurobiological underpinnings. This meta-analysis examined the effects of acute alcohol administration on striatal DA release in healthy humans as measured with [C]-raclopride positron emission tomography (PET). Oral alcohol administration was associated with a significant reduction in [C]-raclopride binding potential (BP) in the ventral striatum (Cohen's d = -0.

View Article and Find Full Text PDF

Bilateral Lesions in Parkinson's Disease: Gaps and Controversies.

Mov Disord

December 2024

Grenoble Alpes University, CHU of Grenoble, Division of Neurology, Grenoble Institute of Neurosciences, INSERM, Grenoble, France.

Bilateral lesions of the basal ganglia using termocoagulation or radiation for improving tremor, bradykinesia, and rigidity in people with Parkinson's disease (PD) have been performed starting several decades ago, especially when levodopa and deep brain stimulation (DBS) surgery were not available. However, because of unclear additional benefit compared to unilateral lesion, and particularly to the evidence of increased adverse events occurrence, bilateral lesions were basically abandoned at the end of the 20th century. Therefore, bilateral DBS has become the standard procedure to treat PD.

View Article and Find Full Text PDF

While olfactory behaviors are influenced by neuromodulatory signals, the underlying mechanism remains unknown. The olfactory tubercle (OT), a component of the olfactory cortex and ventral striatum, consists of anteromedial (am) and lateral (l) domains regulating odor-guided attractive and aversive behaviors, respectively, in which the amOT highly expresses various receptors for feeding-regulated neuromodulators. Here we show functions of appetite-stimulating orexin-1 receptor (OxR1) signaling in the amOT.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!