SerpinB2, a member of the serine protease inhibitor family, is expressed by macrophages and is significantly upregulated by inflammation. Recent studies implicated a role for SerpinB2 in the control of Th1 and Th2 immune responses, but the mechanisms of these effects are unknown. In this study, we used mice deficient in SerpinB2 (SerpinB2(-/-)) to investigate its role in the host response to the enteric nematode, Heligmosomoides bakeri. Nematode infection induced a STAT6-dependent increase in intestinal SerpinB2 expression. The H. bakeri-induced upregulation of IL-4 and IL-13 expression was attenuated in SerpinB2(-/-) mice coincident with an impaired worm clearance. In addition, lack of SerpinB2 in mice resulted in a loss of the H. bakeri-induced smooth muscle hypercontractility and a significant delay in infection-induced increase in mucosal permeability. Th2 immunity is generally linked to a CCL2-mediated increase in the infiltration of macrophages that develop into the alternatively activated phenotype (M2). In H. bakeri-infected SerpinB2(-/-) mice, there was an impaired infiltration and alternative activation of macrophages accompanied by a decrease in the intestinal CCL2 expression. Studies in macrophages isolated from SerpinB2(-/-) mice showed a reduced CCL2 expression, but normal M2 development, in response to stimulation of Th2 cytokines. These data demonstrate that the immune regulation of SerpinB2 expression plays a critical role in the development of Th2-mediated protective immunity against nematode infection by a mechanism involving CCL2 production and macrophage infiltration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4068334 | PMC |
http://dx.doi.org/10.4049/jimmunol.1200293 | DOI Listing |
Front Cell Infect Microbiol
December 2024
School of Biosciences, University of Kent, Canterbury, United Kingdom.
Introduction: Antimicrobial resistance is a growing health problem. Pseudomonas aeruginosa is a pathogen of major concern because of its multidrug resistance and global threat, especially in health-care settings. The pathogenesis and drug resistance of depends on its ability to form biofilms, making infections chronic and untreatable as the biofilm protects against antibiotics and host immunity.
View Article and Find Full Text PDFOpen Vet J
November 2024
Department of Parasitology, College of Veterinary Medicine, University of Al-Qadisiyah, Al Diwaniyahs, Iraq.
Background: is one of the most important parasites, which infests the upper respiratory tract of camels leading to deteriorating health effects, substantial economic losses, and even death.
Aim: This study aimed to detect the prevalence rate of in slaughtered camels, determining its morphology using the electron microscope, and confirming its species by molecular phylogeny.
Methods: A total of 200 slaughtered camels at different areas in Al Muthanna province (Iraq) were inspected visually to collect the parasite samples that were identified initially based on their morphological characteristics.
Open Vet J
November 2024
Department of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Pendidikan Mandalika, Mataram, Indonesia.
Background: is a known cause of a zoonotic infectious illness called toxocariasis. Parathenic hosts are important as they can transmit larvae 2 (L) through direct transmission. Scanning electron microscope (SEM) techniques are needed to provide a three-dimensional image of each stage of larvae.
View Article and Find Full Text PDFArch Razi Inst
June 2024
Department of Parasitology, Ayatollah Rouhani Hospital, Babol Medical Sciences University, Mazandaran, Iran.
is a parasitic nematode that lives in the mucosa of the small intestine and causes strongyloidiasis in humans. Mazandaran is among the endemic areas of this parasite in Iran. For detecting larvae in stool samples, various techniques, such as PCR technique have been used.
View Article and Find Full Text PDFTransl Anim Sci
December 2024
Cooperative Research, College of Agriculture, Environmental and Human Sciences, Lincoln University of Missouri, Jefferson City, MO 65102, USA.
Gastrointestinal nematode (GIN) infection adversely affects the performance and well-being of forage-based sheep throughout the world. The study objectives were to estimate longitudinal differences between birth seasons and production systems for lamb postweaning growth and indicators of GIN infection. Data were collected on Katahdin lambs within a single flock from 2006 to 2022.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!