Extracellular vesicles: communication, coercion, and conditioning.

Mol Biol Cell

Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.

Published: May 2013

Cells communicate with neighboring cells and condition their local environment by secreting soluble factors into the extracellular space. These well-studied facets of cell biology are essential for the establishment and maintenance of physiological homeostasis. However, accumulating evidence has revealed that specific ligands, enzymes, and macromolecules are distributed into the extracellular space by virtue of their association with small vesicles, which are released by a variety of cell types. Although the biological significance of such vesicles was initially debated, purification and subsequent functional studies have shown that these extracellular vesicles are bioactive organelles carrying a wide range of protein and nucleic acid cargoes. In many cases these vesicles are laden with molecules that are involved in cell signaling, although other diverse functions are being revealed at a rapid pace. In this Perspective, we discuss recent developments in the understanding of the major pathways of extracellular vesicle biogenesis and how these vesicles contribute to the maintenance of physiological homeostasis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3639038PMC
http://dx.doi.org/10.1091/mbc.E12-08-0572DOI Listing

Publication Analysis

Top Keywords

extracellular vesicles
8
extracellular space
8
maintenance physiological
8
physiological homeostasis
8
extracellular
5
vesicles
5
vesicles communication
4
communication coercion
4
coercion conditioning
4
conditioning cells
4

Similar Publications

Extracellular vesicles-a new player in the development of urinary bladder cancer.

Ther Adv Med Oncol

January 2025

Chair of Urology and Andrology, Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland.

Bladder cancer was the 10th most commonly diagnosed cancer worldwide in 2020. Extracellular vesicles (EVs) are nano-sized membranous structures secreted by all types of cells into the extracellular space. EVs can transport proteins, lipids, or nucleic acids to specific target cells.

View Article and Find Full Text PDF

Exosomes: new targets for understanding axon guidance in the developing central nervous system.

Front Cell Dev Biol

January 2025

Key Laboratory of Tropical Translational Medicine and Ministry of Education, Hainan Academy of Medical Sciences, Hainan Medical University, Haikou, China.

Axon guidance is a key event in neural circuit development that drives the correct targeting of axons to their targets through long distances and unique patterns. Exosomes, extracellular vesicles that are smaller than 100 nm, are secreted by most cell types in the brain. Regulation of cell-cell communication, neuroregeneration, and synapse formation by exosomes have been extensively studied.

View Article and Find Full Text PDF

Extracellular vesicular microRNAs and cardiac hypertrophy.

Front Endocrinol (Lausanne)

January 2025

Inner Mongolia Key Laboratory of Disease-Related Biomarkers, The Second Affiliated Hospital, Baotou Medical College, Baotou, China.

Cardiac hypertrophy is an adaptive response to pressure or volume overload such as hypertension and ischemic heart diseases. Sustained cardiac hypertrophy eventually leads to heart failure. The pathophysiological alterations of hypertrophy are complex, involving both cellular and molecular systems.

View Article and Find Full Text PDF

A simple, economical, and high-yield method for polyethylene glycol-based extraction of follicular and serum-derived extracellular vesicles.

Tzu Chi Med J

October 2024

Center for Prevention and Therapy of Gynecological Cancers, Department of Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.

Objectives: The optimization of polyethylene glycol (PEG)-based extracellular vesicles (EVs) extraction from human follicular fluid (FF) and serum was investigated, and their functional analysis was confirmed. The PEG-based EV results were compared to the ExoQuick (ExoQ)-based EV.

Materials And Methods: FF-EVs and serum-EVs were extracted by using different concentrations of PEG (8000).

View Article and Find Full Text PDF

Extracellular vesicles (EVs) have garnered attention in research for their potential as biochemical transporters and immune modulators, crucial for regulating the host immune system. The present study was conducted to isolate and characterize EVs from Gram negative bacteria (EVs) and investigate their proteomic profile and immune responses. Isolation of EVs was carried out using ultracentrifugation method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!