Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3749443PMC
http://dx.doi.org/10.1002/anie.201302285DOI Listing

Publication Analysis

Top Keywords

macroscale plasmonic
4
plasmonic substrates
4
substrates highly
4
highly sensitive
4
sensitive surface-enhanced
4
surface-enhanced raman
4
raman scattering
4
macroscale
1
substrates
1
highly
1

Similar Publications

Light-Driven Nanonetwork Assembly of Gold Nanoparticles via 3D Printing for Optical Sensors.

ACS Appl Nano Mater

December 2024

Assistant Professor of Material Science and Engineering, School for Engineering of Matter, Transport and Energy (SEMTE), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Tempe, Arizona 85287, United States.

Additive manufacturing known as 3D printing has transformed the material landscape, with intricate structures and rapid prototyping for modern production. While nanoscale 3D printing has made significant progress, a critical challenge remains in the rapid, high-throughput tailoring of complex nanostructures. Here, we present a 3D printing-facilitated, light-driven assembly technology for rapid surface patterning consisting of complex particle nanonetworks with balanced fabrication resolution and processing scalability.

View Article and Find Full Text PDF

As the demand for smaller and more compact lasers increases, the physical dimensions of laser diodes are already at the diffraction limit, which impairs this miniaturization trend and limits direct laser integration into photonic and especially nanophotonic circuits. However, plasmonics has allowed the development of a novel class of lasers that can be manufactured without being limited by diffraction, exhibiting ultralow energy consumption, small volumes, and high modulation speeds that could someday compete with their modern macroscale counterparts. Nevertheless, a wide variety of issues create roadblocks for further development and commercial adoption.

View Article and Find Full Text PDF

This study showcases the conformal geometries of van der Waals materials with metallic structures utilizing viscoelastic support layers. Mechanically exfoliated nanometer-thick graphite flakes were transferred onto metal structures with various side slopes using two different polymers: polycarbonate (PC) and polyethylene (PE). We proposed a morphology-based evaluation of the macroscale conformity that can contribute to the selection of a proper support layer.

View Article and Find Full Text PDF

Surface-enhanced Raman Scattering (SERS) has become a powerful spectroscopic technology for highly sensitive detection. However, SERS is still limited in the lab because it either requires complicated preparation or is limited to specific compounds, causing poor applicability for practical applications. Herein, a micro-macro SERS strategy, synergizing polymer-assisted printed process with paper-tip enrichment process, is proposed to fabricate highly sensitive paper cartridges for sensitive practical applications.

View Article and Find Full Text PDF

The generation of moiré lattices by superimposing two identical sublattices at a specific twist angle has garnered significant attention owing to its potential applications, ranging from two-dimensional materials to manipulating light propagation. While macroscale moiré lattices have been widely studied, further developments in manipulating moiré lattices at the subwavelength scale would be crucial for miniaturizing and integrating platforms. Here, we propose a plasmonic metasurface design consisting of rotated nanoslits arranged within + ' round apertures for generating focused moiré lattices.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!