Diversification of Fijian halictine bees: insights into a recent island radiation.

Mol Phylogenet Evol

School of Biological Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia.

Published: September 2013

Although bees form a key pollinator suite for flowering plants, very few studies have examined the evolutionary radiation of non-domesticated bees over human time-scales. This is surprising given the importance of bees for crop pollination and the effect of humans in transforming ecosystems via agriculture. In the Pacific, where the bee fauna appears depauperate, their importance as pollinators is not clear, particularly in Fiji where species diversity is even lower than neighbouring archipelagos. Here we explore the radiation of halictine bees in Fiji using phylogenetic analyses of mtDNA COI sequence data. Our analyses indicate the existence of several 'deep' clades whose divergences are close to the crown node, along with a highly derived 'broom' clade showing very high haplotype diversity, and mostly limited to low-lying agricultural regions. This derived clade is very abundant, whereas the more basal clades were relatively rare. Although nearly all haplotype diversity in Fijian Homalictus comprises synonymous substitutions, a small number of amino acid changes are associated with the major clades, including the hyper-diverse clade. Analyses of haplotype lineage accumulation show a steep increase in selectively neutral COI haplotypes corresponding to the emergence of this 'broom' clade. We explore three possible scenarios for this dramatic increase: (i) a key change in adaptedness to the environment, (ii) a large-scale extinction event, or (iii) a dramatic increase in suitable habitats leading to rapid population expansion. Using estimated mutation rates of mitochondrial DNA in other invertebrates, we argue that Homalictus first colonised the Fijian archipelago in the middle-late Pleistocene, and the rapid accumulation of haplotypes in the hyper-diverse clade occurred in the Holocene, but prior to recorded human presence in the Fijian region. Our results indicate that bees have not been important pollinators of Fijian ecosystems until very recent times. Post-Pleistocene climate change and anthropogenic effects on Fijian ecosystems are likely to have greatly transformed pollinator suites from the conditions when those ecosystems were first being assembled.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ympev.2013.04.015DOI Listing

Publication Analysis

Top Keywords

halictine bees
8
'broom' clade
8
haplotype diversity
8
hyper-diverse clade
8
dramatic increase
8
fijian ecosystems
8
bees
6
clade
5
fijian
5
diversification fijian
4

Similar Publications

Bee pollination services and the burden of biogeography.

Proc Biol Sci

June 2023

Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales 2753, Australia.

Native bees augment pollination services in the Northern Hemisphere, especially cultivated apple crops, yet Southern Hemisphere contexts are poorly known. We observed the foraging behaviour of 69 354 invertebrate flower visitors in Australian orchards (two regions, 3 years) to assess the efficacy of pollination service (). Native stingless bees and introduced honey bees were the most abundant visitors and most efficacious pollinators ( = 6.

View Article and Find Full Text PDF

The halictid genus Lasioglossum, as one of the most species-rich bee groups with persistently contentious subgeneric boundaries, is one of the most challenging bee groups from a systematic standpoint. An enduring question is the relationship of Lasioglossum and Homalictus, whether all halictine bees with weakened distal wing venation comprise one or multiple genera. Here, we analyzed the phylogenetic relationships among the subgroups within Lasioglossum s.

View Article and Find Full Text PDF

Changes of abiotic and biotic conditions along elevational gradients represent serious challenges to organisms which may promote the turnover of species, traits and biotic interaction partners. Here, we used molecular methods to study cuticular hydrocarbon (CHC) profiles, biotic interactions and phylogenetic relationships of halictid bees of the genus along a 2,900 m elevational gradient at Mt. Kilimanjaro, Tanzania.

View Article and Find Full Text PDF

Naturally occurring antimicrobial peptides and their synthetic analogues are promising candidates for new antifungal drugs. We focused on three groups of peptides isolated from the venom of bees and their synthetic analogues (lasioglossins, halictines and hylanines), which all rapidly permeabilised the plasma membrane. We compared peptides' potency against six pathogenic Candida species (C.

View Article and Find Full Text PDF

Alkali bees () are solitary relatives of the halictine bees, which have become an important model for the evolution of social behavior, but for which few solitary comparisons exist. These ground-nesting bees defend their developing offspring against pathogens and predators, and thus exhibit some of the key traits that preceded insect sociality. Alkali bees are also efficient native pollinators of alfalfa seed, which is a crop of major economic value in the United States.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!