Objectives: Limited data are available on resistance to etravirine, rilpivirine, darunavir and tipranavir in patients infected with HIV-1 non-B subtypes, in which natural polymorphisms at certain positions could influence the barrier and/or pathways to drug resistance.
Methods: FASTA format sequences from the reverse transcriptase and protease genes recorded within the Spanish Drug Resistance database (ResRIS) were examined.
Results: From 8272 genotypes derived from 5930 different HIV-1 patients included in ResRIS, 5276 genotypes had complete treatment information. Overall, 85% were from antiretroviral-experienced subjects and 7.5% belonged to HIV-1 non-B subtypes: CRF02_AG, C, F and G being the most prevalent variants. For etravirine, only G190A was more prevalent in B than non-B subtypes, whereas V90I and V179E were more frequent in non-B than B subtypes. For rilpivirine, V108I and Y188I were more frequent in B than non-B subtypes, whereas V90I was more prevalent in non-B subtypes. Despite these differences, the overall prevalence of resistance did not differ significantly when comparing etravirine or rilpivirine in B versus non-B subtypes (11.3% versus 7.4%, P = 0.13, and 10.5% versus 7.4%, P = 0.23, respectively). Despite more frequent natural polymorphisms in non-B than B subtypes at tipranavir resistance positions, the prevalence of tipranavir resistance was greater in B than non-B subtypes (11% versus 4.3%, P = 0.004), reflecting a greater antiretroviral exposure in the former. Darunavir resistance did not differ significantly when comparing B and non-B subtypes (5.8% versus 5.5%, P = 0.998).
Conclusions: The rate of resistance to the most recently approved protease and non-nucleoside reverse transcriptase inhibitors is low in antiretroviral-experienced patients, regardless of the HIV-1 subtype.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jac/dkt146 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!