Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Desiccation tolerance is one of the most important traits determining seed survival during storage and under stress conditions. However, the mechanism of seed desiccation tolerance is still unclear in detail. In the present study, we used a combined model system, desiccation-tolerant and -sensitive maize embryos with identical genetic background, to investigate the changes in desiccation tolerance, malonyldialdehyde (MDA) level, hydrogen peroxide (H₂O₂) content and antioxidant enzyme activity during seed development and germination in 0, -0.6 and -1.2 MPa polyethylene glycol (PEG)-6000 solutions. Our results indicated that maize embryos gradually acquired and lost desiccation tolerance during development and germination, respectively. The acquirement and loss of desiccation tolerance of embryos during development and germination were related to the ability of antioxidant enzymes including superoxide dismutase (SOD, EC 1.15.1.1), ascorbate peroxidase (APX, EC 1.11.1.11), catalase (CAT, EC 1.11.1.6), glutathione reductase (GR, EC 1.6.4.2) and dehydroascorbate reductase (DHAR, EC 1.8.5.1) to scavenge reactive oxygen species (ROS) and to control MDA content. Compared with treatment in water, PEG-6000 treatment could markedly delay the loss of desiccation tolerance of germinating embryos by delaying water uptake and time course of germination, increasing GR activity and decreasing MDA content. Our data showed the combination of antioxidant enzyme activity and MDA content is a good parameter for assessing the desiccation tolerance of maize embryos. In addition, H₂O₂ accumulated in mature embryos and PEG-treated embryos after drying, which was at least partially related to a longer embryo/seedling length in rehydration and the physiological mechanisms of priming.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plaphy.2013.02.029 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!