Review of hair cell synapse defects in sensorineural hearing impairment.

Otol Neurotol

InnerEarLab, Department of Otolaryngology, University of Göttingen Medical School, Göttingen, Germany.

Published: August 2013

Objective: To review new insights into the pathophysiology of sensorineural hearing impairment. Specifically, we address defects of the ribbon synapses between inner hair cells and spiral ganglion neurons that cause auditory synaptopathy.

Data Sources And Study Selection: Here, we review original publications on the genetics, animal models, and molecular mechanisms of hair cell ribbon synapses and their dysfunction.

Conclusion: Hair cell ribbon synapses are highly specialized to enable indefatigable sound encoding with utmost temporal precision. Their dysfunctions, which we term auditory synaptopathies, impair audibility of sounds to varying degrees but commonly affect neural encoding of acoustic temporal cues essential for speech comprehension. Clinical features of auditory synaptopathies are similar to those accompanying auditory neuropathy, a group of genetic and acquired disorders of spiral ganglion neurons. Genetic auditory synaptopathies include alterations of glutamate loading of synaptic vesicles, synaptic Ca influx or synaptic vesicle turnover. Acquired synaptopathies include noise-induced hearing loss because of excitotoxic synaptic damage and subsequent gradual neural degeneration. Alterations of ribbon synapses likely also contribute to age-related hearing loss.

Download full-text PDF

Source
http://dx.doi.org/10.1097/MAO.0b013e3182814d4aDOI Listing

Publication Analysis

Top Keywords

ribbon synapses
16
hair cell
12
auditory synaptopathies
12
sensorineural hearing
8
hearing impairment
8
spiral ganglion
8
ganglion neurons
8
cell ribbon
8
synaptopathies include
8
hearing loss
8

Similar Publications

To encode continuous sound stimuli, the inner hair cell (IHC) ribbon synapses utilize calcium-binding proteins (CaBPs), which reduce the inactivation of their Ca1.3 calcium channels. Mutations in the gene underlie non-syndromic autosomal recessive hearing loss DFNB93.

View Article and Find Full Text PDF

Neural and behavioral binaural hearing impairment and its recovery following moderate noise exposure.

Hear Res

December 2024

Neuroscience Graduate Program, University of Colorado School of Medicine, Aurora, CO 80045, USA; Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO 80045, USA. Electronic address:

Noise-induced cochlear synaptopathy has been studied for over 25 years with no known diagnosis for this disorder in humans. This type of "hidden hearing loss" induces a loss of synapses in the inner ear but no change in audiometric thresholds. Recent studies have shown that by two months post synaptopathy-inducing noise exposure, synapses in some animal species can regenerate.

View Article and Find Full Text PDF

Conditional Tnfaip6-Knockout in Inner Ear Hair Cells Does not Alter Auditory Function.

Neurosci Bull

December 2024

Department of Otolaryngology-Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.

Noise-induced hearing loss is a worldwide public health issue that is characterized by temporary or permanent changes in hearing sensitivity. This condition is closely linked to inflammatory responses, and interventions targeting the inflammatory gene tumor necrosis factor-alpha (TNFα) are known to mitigate cochlear noise damage. TNFα-induced proteins (TNFAIPs) are a family of translucent acidic proteins, and TNFAIP6 has a notable association with inflammatory responses.

View Article and Find Full Text PDF

Canonical MAPK signaling in auditory neuropathy.

Biochim Biophys Acta Mol Basis Dis

December 2024

Otorhinolaryngology Hospital, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Institute of Otorhinolaryngology, Sun Yat-sen University, Guangzhou 510080, China. Electronic address:

Auditory neuropathy (AN) is an under-recognized form of hearing loss characterized by lesions in inner hair cells (IHCs), ribbon synapses and spiral ganglion neurons (SGNs). The lack of a targeted therapy for AN has increased the need for a better understanding of the pathogenic mechanism of AN. As mitogen-activated protein kinase (MAPK) signaling is ubiquitous in many biological processes, its alteration may facilitate the pathogenesis of multiple sites in AN.

View Article and Find Full Text PDF

Synaptic ribbons, recognized for their pivotal role in conveying sensory signals in the visual pathway, are intricate assemblages of presynaptic proteins. Complexin (CPX) regulates synaptic vesicle fusion and neurotransmitter release by modulating the assembly of the soluble NSF attachment protein receptor (SNARE) complex, ensuring precise signal transmission in the retina and the broader central nervous system (CNS). While CPX1 or CPX2 isoforms (CPX1/2) play crucial roles in classical CNS synapses, CPX3 or CPX4 isoforms (CPX3/4) specifically regulate retinal ribbon synapses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!