Validation of data-driven computational models of social perception of faces.

Emotion

Department of Psychology, Department of Psychology, Princeton University, Green Hall,Princeton, NJ 08544, USA.

Published: August 2013

People rapidly form impressions from facial appearance, and these impressions affect social decisions. We argue that data-driven, computational models are the best available tools for identifying the source of such impressions. Here we validate seven computational models of social judgments of faces: attractiveness, competence, dominance, extroversion, likability, threat, and trustworthiness. The models manipulate both face shape and reflectance (i.e., cues such as pigmentation and skin smoothness). We show that human judgments track the models' predictions (Experiment 1) and that the models differentiate between different judgments, though this differentiation is constrained by the similarity of the models (Experiment 2). We also make the validated stimuli available for academic research: seven databases containing 25 identities manipulated in the respective model to take on seven different dimension values, ranging from -3 SD to +3 SD (175 stimuli in each database). Finally, we show how the computational models can be used to control for shared variance of the models. For example, even for highly correlated dimensions (e.g., dominance and threat), we can identify cues specific to each dimension and, consequently, generate faces that vary only on these cues.

Download full-text PDF

Source
http://dx.doi.org/10.1037/a0032335DOI Listing

Publication Analysis

Top Keywords

computational models
16
data-driven computational
8
models
8
models social
8
validation data-driven
4
computational
4
social perception
4
perception faces
4
faces people
4
people rapidly
4

Similar Publications

Background: The aging global population and the rising prevalence of chronic disease and multimorbidity have strained health care systems, driving the need for expanded health care resources. Transitioning to home-based care (HBC) may offer a sustainable solution, supported by technological innovations such as Internet of Medical Things (IoMT) platforms. However, the full potential of IoMT platforms to streamline health care delivery is often limited by interoperability challenges that hinder communication and pose risks to patient safety.

View Article and Find Full Text PDF

Introduction: Coagulopathy following traumatic injury impairs stable blood clot formation and exacerbates mortality from hemorrhage. Understanding how these alterations impact blood clot stability is critical to improving resuscitation. Furthermore, the incorporation of machine learning algorithms to assess clinical markers, coagulation assays and biochemical assays allows us to define the contributions of these factors to mortality.

View Article and Find Full Text PDF

Background: Environmental change in coastal areas can drive marine bacteria and resulting infections, such as those caused by , with both foodborne and nonfoodborne exposure routes and high mortality. Although ecological drivers of in the environment have been well-characterized, fewer models have been able to apply this to human infection risk due to limited surveillance.

Objectives: The Cholera and Other Illness Surveillance (COVIS) system database has reported infections in the United States since 1988, offering a unique opportunity to both explore the forecasting capabilities machine learning could provide and to characterize complex environmental drivers of infections.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!