The objective of the study presented was to determine the prevalence of oral problems--eg, dental erosion, rough surfaces, pain--among young competitive swimmers in India, because no such studies are reported. Its design was a cross-sectional study with a questionnaire and clinical examination protocols. It was conducted in a community setting on those who were involved in regular swimming in pools. Questionnaires were distributed to swimmers at the 25th State Level Swimming Competition, held at Thane Municipal Corporation's Swimming Pool, India. Those who returned completed questionnaires were also clinically examined. Questionnaires were analyzed and clinical examinations focused on either the presence or absence of dental erosions and rough surfaces. Reported results were on 100 swimmers who met the inclusion criteria. They included 75 males with a mean age of 18.6 ± 6.3 years and 25 females with a mean age of 15.3 ± 7.02 years. Among them, 90% showed dental erosion, 94% exhibited rough surfaces, and 88% were found to be having tooth pain of varying severity. Erosion and rough surfaces were found to be directly proportional to the duration of swimming. The authors concluded that the prevalence of dental erosion, rough surfaces, and pain is found to be very common among competitive swimmers. They recommend that swimmers practice good preventive measures and clinicians evaluate them for possible swimmer's erosion.

Download full-text PDF

Source

Publication Analysis

Top Keywords

rough surfaces
20
dental erosion
16
competitive swimmers
12
erosion rough
12
prevalence dental
8
young competitive
8
erosion
6
swimmers
6
rough
5
surfaces
5

Similar Publications

Roughness metrics measured with stylus profilometry are commonly used to explain a floor's friction performance, yet these metrics inconsistently predict shoe-floor friction. While strong correlations have been shown for systematically modified flooring, the goal of this study is to address a gap regarding the predictive ability of these metrics across heterogeneous porcelain flooring products. The predictive ability of four roughness metrics on oily friction performance was assessed using 23 floors and 4 shoe designs.

View Article and Find Full Text PDF

Anchorable Polymers Enabling Ultra-Thin and Robust Hole-Transporting Layers for High-Efficiency Inverted Perovskite Solar Cells.

Angew Chem Int Ed Engl

January 2025

Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Shanghai Key Laboratory of Functional Materials Chemistry, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China.

Currently, the development of polymeric hole-transporting materials (HTMs) lags behind that of small-molecule HTMs in inverted perovskite solar cells (PSCs). A critical challenge is that conventional polymeric HTMs are incapable of forming ultra-thin and conformal coatings like self-assembly monolayers (SAMs), especially for substrates with rough surface morphology. Herein, we address this challenge by designing anchorable polymeric HTMs (CP1 to CP5).

View Article and Find Full Text PDF

Morphological Features Influence the Drug Loading and Delivery Efficacy of Photoactivatable Gold Nanocarriers for Antitumor Photo/Chemotherapy.

ACS Appl Mater Interfaces

January 2025

Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong 271016, PR China.

Photoactivatable gold nanocarriers are transforming antitumor therapies by leveraging their distinctive physicochemical properties, enabling targeted drug delivery and enhanced therapeutic efficacy in cancer treatment. This study systematically investigates how surface topography and morphology of gold nanocarriers influence drug loading capacity, light-to-heat conversion efficiency, and overall therapeutic performance in photo/chemotherapy. We synthesized four distinct morphologies of gold nanoparticles: porous gold nanocups (PAuNCs), porous gold nanospheres (PAuNSs), solid gold nanocups (SAuNCs), and solid gold nanospheres (SAuNSs).

View Article and Find Full Text PDF

Purpose: SLM 3D printing technology is one of the most widely used implant-making technologies. However, the surfaces of the implants are relatively rough, and bacteria can easily adhere to them; increasing the risk of postoperative infection. Therefore, we prepared a near-infrared photoresponsive nano-TiO coating on the surface of an SLM 3D-printed titanium alloy sheet (Ti6Al4V) via a hydrothermal method to evaluate its antibacterial properties and biocompatibility.

View Article and Find Full Text PDF

Objective: This study aimed to evaluate the chemical solubility (CS) and conduct a comprehensive physicochemical characterization of several experimental and commercial lithium silicate-based glass-ceramics towards an understanding of the chemical processes governing dissolution in these glass-ceramics.

Methodology: Glass-ceramic (GC) samples were categorized into two groups: experimental materials featuring lithium metasilicate crystals (GCE1 and GCE2); and five commercial brands relying mostly on lithium disilicate (Celtra®Duo, IPS e.max®CAD, Straumann®n!ce®, CEREC Tessera™, and VITA Suprinity®).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!