Objective: To analyse the polymorphism of squalene synthase gene and reveal the influence of squalene synthase (SQS) gene polymorphism on the catalytic efficiency of its encode enzyme in Glycyrrhiza uralensi.
Method: The total RNA was extracted. PCR was used to amplify the coding sequences of squalene synthase gene, which were sequenced and analysed. The expression vectors containing different SQS gene sequences, including SQS1C, SQS1F, SQS2A, SQS2B, were constructed and transformed into Escherichia coli BL21. The fusion protein was induced to express by IPTG, then was isolated, purified and used to carry out the enzymatic reaction in vitro. GC-MS was used to analyse the production.
Result: There were three kinds of gene polymorphism existing in SQS1 gene of G. uralensis, including single nucleotide polymorphism (SNPs), insertion/deletion length polymorphism (InDels) and level of amino acid, the proportion of conservative replace of SQS1 was 53.94%, and there were 2 mutational sites in structural domains. The proportion of conservative replace of SQS2 was 60%, and there was 1 mutational site in structural domains. The production squalene could be detected by GC-MS in all the 4 kinds of enzymatic reactions. The capacity of accumulating squalene of SQS1F was higher than other SQS genes.
Conclusion: The polymorphism of SQS gene was quite abundant in G. uralensis, which maybe the molecular foundation of the formation of high-quality liquorice.
Download full-text PDF |
Source |
---|
Mol Metab
December 2024
Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy. Electronic address:
J Agric Food Chem
December 2024
Guangdong Engineering Research Center of Biosynthesis and Metabolism of Effective Components of Chinese Medicine, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, P. R. China.
J Biomol Struct Dyn
December 2024
Laboratory of Biology and Health, Faculty of Sciences Ben M'Sick, Health and Biotechnology Research Centre, Hassan II University of Casablanca, Casablanca, Morocco.
Squalene synthase (SQS) plays a crucial role in the cholesterol biosynthetic pathway. Its distinctive strategic position makes it a promising candidate for targeting and developing new anti-hypercholesterolemic agents. To uncover novel phytochemical scaffolds as potential inhibitors of SQS, we employed a structure-based virtual screening approach that involves screening 545 phytochemicals collected from Moroccan aromatic and medicinal plants and filtering them based on RMSD values and their affinity towards the target enzyme.
View Article and Find Full Text PDFPLoS One
November 2024
Department of Pharmacognosy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China.
Biomolecules
October 2024
College of Animal Science and Technology, Shandong Agricultural University, Tai'an 271017, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!