Background And Purpose: Repetitive transcranial magnetic stimulation (rTMS) has potential as a noninvasive neuromodulation treatment method for various neuropsychiatric disorders, and repeated sessions of rTMS are more likely to enhance the therapeutic efficacy. This study investigated neurophysiologic and spatiodynamic changes induced by repeated 1-Hz rTMS of the temporal cortex using transcranial magnetic stimulation (TMS) indices and fluorodeoxyglucose positron emission tomography (FDG-PET).
Methods: Twenty-seven healthy subjects underwent daily 1-Hz active or sham rTMS of the right temporal cortex for 5 consecutive days. TMS indices of motor cortical excitability were measured in both hemispheres daily before and after each rTMS session, and 2 weeks after the last stimulation. FDG-PET was performed at baseline and after the 5 days of rTMS sessions.
Results: All subjects tolerated all of the sessions well, with only three of them (11.1%) reporting mild transient side effects (i.e., headache, tinnitus, or local irritation). One-Hz rTMS decreased motor evoked potential amplitudes and delayed cortical silent periods in the stimulated hemisphere. Statistical parametric mapping of FDG-PET data revealed a focal reduction of glucose metabolism in the stimulated temporal area and an increase in the bilateral precentral, ipsilateral superior and middle frontal, prefrontal and cingulate gyri.
Conclusions: Repeated rTMS sessions for 5 consecutive days were tolerated in all subjects, with only occasional minor side effects. Focal 1-Hz rTMS of the temporal cortex induces cortico-cortical modulation with widespread functional changes in brain neural networks via long-range neural connections.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3633194 | PMC |
http://dx.doi.org/10.3988/jcn.2013.9.2.75 | DOI Listing |
Introduction: This study aimed to identify cognitive tests that optimally relate to tau positron emission tomography (PET) signal in the inferior temporal cortex (ITC), a neocortical region associated with early tau accumulation in Alzheimer's disease (AD).
Methods: We analyzed cross-sectional data from the harvard aging brain study (HABS) (= 128) and the Anti-Amyloid Treatment in Asymptomatic Alzheimer's (A4) study (= 393). We used elastic net regression to identify the most robust cognitive correlates of tau PET signal in the ITC.
iScience
January 2025
School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran 14399-57131, Iran.
Microsaccades, a form of fixational eye movements, help maintain visual stability during stationary observations. This study examines the modulation of microsaccadic rates by various stimulus categories in monkeys and humans during a passive viewing task. Stimulus sets were grouped into four primary categories: human, animal, natural, and man-made.
View Article and Find Full Text PDFEur J Med Res
January 2025
Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
Background: To investigate the alterations in spontaneous brain activity and the similarities and differences between monocular deprivation amblyopia and binocular deprivation amblyopia.
Methods: Twenty children with binocular deprivation amblyopia, 26 children with monocular deprivation amblyopia and 20 healthy controls underwent resting-state functional magnetic resonance imaging. The evaluation of altered spontaneous brain activity was conducted using fractional amplitude of low-frequency fluctuations (fALFF).
Nat Commun
January 2025
Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
Cortical interneurons generated from ganglionic eminence via a long-distance journey of tangential migration display evident cellular and molecular differences across brain regions, which seeds the heterogeneous cortical circuitry in primates. However, whether such regional specifications in interneurons are intrinsically encoded or gained through interactions with the local milieu remains elusive. Here, we recruit 685,692 interneurons from cerebral cortex and subcortex including ganglionic eminence within the developing human and macaque species.
View Article and Find Full Text PDFJ Neurosci
January 2025
Department of Electrical and Computer Engineering, University of Maryland, College Park, MD, 20742
When we listen to speech, our brain's neurophysiological responses "track" its acoustic features, but it is less well understood how these auditory responses are enhanced by linguistic content. Here, we recorded magnetoencephalography (MEG) responses while subjects of both sexes listened to four types of continuous-speech-like passages: speech-envelope modulated noise, English-like non-words, scrambled words, and a narrative passage. Temporal response function (TRF) analysis provides strong neural evidence for the emergent features of speech processing in cortex, from acoustics to higher-level linguistics, as incremental steps in neural speech processing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!