Time-resolved utilization of multiple amino acids by Phaeobacter inhibens DSM 17395 was studied during growth with casamino acids. The 15 detected amino acids could be grouped according to depletion rate into four different categories, i.e. from rapid (category I) to nondepletion (category IV). Upon entry into stationary growth phase, amino acids of category I (e.g. glutamate) were (almost) completely depleted, while those of categories II (e.g. leucine) and III (e.g. serine) were further consumed at varying rates and to different extents. Thus, cultures entered stationary growth phase despite the ample presence of organic nutrients, i.e. under nonlimiting conditions. Integrated proteomic and metabolomic analysis identified 1747 proteins and 94 intracellular metabolites. Of these, 180 proteins and 86 metabolites displayed altered abundance levels during growth. Most strikingly, abundance and activity profiles of alanine dehydrogenase concomitantly increased with the onset of enhanced alanine utilization during transition into stationary growth phase. Most enzymes of amino acid and central metabolism, however, displayed unaltered abundances across exponential and stationary growth phases. In contrast, metabolites of the Entner-Doudoroff pathway and gluconeogenesis as well as cellular fatty acids increased markedly in abundance in early stationary growth phase.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/pmic.201200560 | DOI Listing |
Eng Life Sci
January 2025
Mechanical and Process Engineering RPTU Kaiserslautern-Landau Kaiserslautern Germany.
Bioelectrochemical systems (BESs) offer a sustainable method for chemical production, including the enhanced production of succinic acid. By combining fermentation with BES, it could be possible to achieve sustainable succinic acid production and CO fixation using . In literature, the potential application of BES is commonly associated with increased succinate yields, as it is expected to enhance the availability of NADH, thereby influencing the intracellular nicotinamide adenine dinucleotide (NADH/NAD) balance.
View Article and Find Full Text PDFFood Res Int
January 2025
Center for Research and Development in Food Cryotechnology (CIDCA, CCT-CONICET), La Plata 1900, Argentina. Electronic address:
Layer-by-Layer (LbL) self-assembly encapsulation is a promising technology for the protection and delivery of lactic acid bacteria. However, laboratory-scale encapsulation is often time-consuming, involves intensive protocols tailored for small-scale operations, requires substantial amounts of energy and water, and results in a low yield of encapsulated biomass. Scaling-up this process to a bench-bioreactor scale is not simply a matter of increasing culture volume as different key parameters (not particularly relevant at lab scale) become critical, including biomass production, the number of polymer layers, and the biomass-to-polymer mass ratio.
View Article and Find Full Text PDFMicrobiol Res
December 2024
Commonwealth Scientific and Industrial Research Organisation (CSIRO), Agriculture and Food, Acton, ACT, Australia; Commonwealth Scientific and Industrial Research Organisation (CSIRO), Advanced Engineering Biology Future Science Platform, Acton, ACT, Australia; Commonwealth Scientific and Industrial Research Organisation (CSIRO), Microbiomes for One Systems Health Future Science Platform, Acton, ACT, Australia.
The use of multi-omic approaches has significantly advanced the exploration of microbial traits, leading to the discovery of new bioactive compounds and their mechanisms of action. Streptomyces sp. MH71 is known for its antifungal properties with potential for use in crop protection.
View Article and Find Full Text PDFCurr Biol
January 2025
Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA. Electronic address:
Animals need to rapidly learn to recognize and avoid predators. This ability may be especially important for young animals due to their increased vulnerability. It is unknown whether, and how, nascent vertebrates are capable of such rapid learning.
View Article and Find Full Text PDFmSystems
December 2024
Department of Bioengineering, University of California, San Diego, California, USA.
Unlabelled: The composition of bacterial transcriptomes is determined by the transcriptional regulatory network (TRN). The TRN regulates the transition from one physiological state to another. Here, we use independent component analysis to monitor the composition of the transcriptome during the transition from the exponential growth phase to the stationary phase.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!