Cten is a focal adhesion molecule that is expressed at very low levels in most normal tissues. Nonetheless, its expression has been found to increase dramatically in many types of cancer including colorectal, breast, gastric, and pancreatic cancer, suggesting that cten may play a critical role during tumorigenesis. To study the mechanisms that induce cten expression and the function of up-regulated cten, we examined the effects of several cancer-associated growth factors and cytokines on cten expression. We found that EGF, FGF2, NGF, PDGF, TGF-β, IGF-1, IL-6, and IL-13 were able to induce cten expression in a dose- and time-dependent manner. The Mek-Erk and PI3K-Akt pathways were two main signaling cascades responsible for cten up-regulation, whereas the Jak-Stat pathway could contribute to the increase in some conditions. Since many of these factors are known to promote cell migration, we hypothesized that up-regulated cten might contribute to this process. This hypothesis was investigated in FGF2-mediated cell migration. Silencing of cten not only reduced regular cell motility but also FGF2-mediated cell migration. Overexpression of cten promoted cell migration and FGF2 treatment failed to further enhance cell migration. Our findings that (1) cten is a common downstream molecule of these cancer-associated growth factors and cytokines; and that (2) up-regulated cten modulates cell migration induced by FGF2 and likely other growth factors as well, strongly suggest that cten could be a potential downstream therapeutic target for treating cancers associated with aberrant signaling of these growth factors and cytokines.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4388201 | PMC |
http://dx.doi.org/10.1002/mc.22034 | DOI Listing |
Sci Adv
January 2025
Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, CO, USA.
Programmed cell death protein 1 (PD-1) and programmed death ligand 1 (PD-L1) interactions are targets for immunotherapies aimed to reinvigorate T cell function. Recently, it was documented that PD-L1 regulates dendritic cell (DC) migration through intracellular signaling events. In this study, we find that both preclinical murine and clinically available human PD-L1 antibodies limit DC migration.
View Article and Find Full Text PDFPLoS Comput Biol
January 2025
European Molecular Biology Laboratory, Cell Biology and Biophysics Unit, Heidelberg, Germany.
The characterization of phenotypes in cells or organisms from microscopy data largely depends on differences in the spatial distribution of image intensity. Multiple methods exist for quantifying the intensity distribution - or image texture - across objects in natural images. However, many of these texture extraction methods do not directly adapt to 3D microscopy data.
View Article and Find Full Text PDFPLoS Genet
January 2025
Waksman Institute, Rutgers, the State University of New Jersey, Piscataway, New Jersey, United States of America.
Mitosis and meiosis have two mechanisms for regulating the accuracy of chromosome segregation: error correction and the spindle assembly checkpoint (SAC). We have investigated the function of several checkpoint proteins in meiosis I of Drosophila oocytes. Increased localization of several SAC proteins was found upon depolymerization of microtubules by colchicine.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada 18008, Spain.
Bacterial receptors feed into multiple signal transduction pathways that regulate a variety of cellular processes including gene expression, second messenger levels, and motility. Receptors are typically activated by signal binding to ligand-binding domains (LBDs). Cache domains are omnipresent LBDs found in bacteria, archaea, and eukaryotes, including humans.
View Article and Find Full Text PDFPLoS One
January 2025
Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China.
Hepatocellular carcinoma(HCC) has a high mortality and morbidity rate and seriously jeopardizes human life. Chemicals and chemotherapeutic agents have been experiencing problems such as side effects and drug resistance in the treatment of HCC, which cannot meet the needs of clinical treatment. Therefore, finding novel low-toxicity and high-efficiency anti-hepatocellular carcinoma drugs and exploring their mechanisms of action have become the current problems to be solved in the treatment of HCC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!