Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Cyanate is formed mostly during nonenzymatic urea biodegradation. Its active form isocyanate reacts with protein -NH2 and -SH groups, which changes their structure and function. The present studies aimed to investigate the effect of cyanate on activity of the enzymes, which possess -SH groups in the active centers and are implicated in anaerobic cysteine transformation and cyanide detoxification, as well as on glutathione level and peroxidative processes in different brain structures of the rat: cortex, striatum, hippocampus, and substantia nigra. In addition, we examined whether a concomitant treatment with lipoate, a dithiol that may act as a target of S-carbamoylation, can prevent these changes. Cyanate-inhibited sulfurtransferase activities and lowered sulfide level, which was accompanied by a decrease in glutathione concentration and elevation of reactive oxygen species level in almost all rat brain structures. Lipoate administered in combination with cyanate was able to prevent the above-mentioned negative cyanate-induced changes in a majority of the examined brain structures. These observations can be promising for chronic renal failure patients since lipoate can play a double role in these patients contributing to efficient antioxidant defense and protection against cyanate and cyanide toxicity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3753499 | PMC |
http://dx.doi.org/10.1007/s12640-013-9395-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!