This study was designed to test the feasibility of using sinusoidal approximation in combination with a new instrumentation approach to resolve complex impedance (uCI) spectra from heart preparations. To assess that feasibility, we applied stimuli in the 10-4000 Hz range and recorded potential differences (uPDs) in a four-electrode configuration that allowed identification of probe constants (Kp) during calibration that were in turn used to measure total tissue resistivity ρt from rabbit ventricular epicardium. Simultaneous acquisition of a signal proportional to the supplied current (Vstim) with uPD allowed identification of the V- I ratio needed for ρt measurement, as well as the phase shift from Vstim to uPD needed for uCI spectra resolution. Performance with components integrated to reduce noise in cardiac electrophysiologic experiments, in particular, and provide accurate electrometer-based measurements, in general, was first characterized in tests using passive loads. Load tests showed accurate uCI recovery with mean uPD SNRs between 10 (1) and 10 (3) measured with supplied currents as low as 10 nA. Comparable performance characteristics were identified during calibration of nine arrays built with 250 μm Ag/AgCl electrodes, with uCIs that matched analytic predictions and no apparent effect of frequency ( F = 0.12, P = 0.99). The potential ability of parasitic capacitance in the presence of the electrode-electrolyte interface associated with the small sensors to influence the uCI spectra was therefore limited by the instrumentation. Resolution of uCI spectra in rabbit ventricle allowed measurement of ρt = 134 ± 53 Ω· cm. The rapid identification available with this strategy provides an opportunity for new interpretations of the uCI spectra to improve quantification of disease-, region-, tissue-, and species-dependent intercellular uncoupling in hearts.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3957433 | PMC |
http://dx.doi.org/10.1109/TBME.2013.2258917 | DOI Listing |
Chemphyschem
December 2024
Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, Madrid, 28049, Spain.
In this study, we systematically explored the stability and isomerism of neutral and dehydrogenated polycyclic aromatic hydrocarbons (PAHs) in various charge states, focusing on anthracene, acridine, and phenazine. Our findings highlight key aspects that deepen the understanding of these molecules' reactivity and stability, relevant in both laboratory and astrophysical contexts. Structural symmetry and the presence of nitrogen atoms significantly impact PAH stability and reactivity.
View Article and Find Full Text PDFSci Total Environ
November 2024
Department of Plant Biology, Institute of Biology, University of Campinas, Campinas, SP 13083-862, Brazil.
To ensure unbiased tree-ring radiocarbon (C) results, traditional pretreatments carefully isolate wood cellulose from extractives using organic solvents, among other chemicals. The addition of solvents is laborious, time-consuming, and can increase the risk of carbon contamination. Tropical woods show a high diversity in wood-anatomical and extractive composition, but the necessity of organic-solvent extraction for the C dating of these diverse woods remains untested.
View Article and Find Full Text PDFNMR Biomed
September 2024
Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
Neurofibrillary tangles of tau constitute one of the key biological hallmarks of Alzheimer's disease. Currently, the assessment of regional tau accumulation requires intravenous administration of radioactive tracers for PET imaging. A noninvasive MRI-based solution would have significant clinical implications.
View Article and Find Full Text PDFChem Sci
February 2024
Department of Chemistry, University of California-Irvine Irvine CA 92697 USA
Metalloproteins with dinuclear cores are known to bind and activate dioxygen, with a subclass of these proteins having active sites containing FeMn cofactors and activities ranging from long-range proton-coupled electron transfer (PCET) to post-translational peptide modification. While mechanistic studies propose that these metallocofactors access FeMn intermediates, there is a dearth of related synthetic analogs. Herein, the first well-characterized synthetic Fe-(μ-O)-Mn complex is reported; this complex shows similar spectroscopic features as the catalytically competent FeMn intermediate X found in Class Ic ribonucleotide reductase and demonstrates PCET function towards phenolic substrates.
View Article and Find Full Text PDFPhotodiagnosis Photodyn Ther
February 2024
Department of Radiological Sciences, University of California Irvine, USA. Electronic address:
Difficulty in heating tumors with high spatial selectivity while protecting surrounding healthy tissues from thermal harm is a challenge for cancer photothermal treatment (PTT). To mitigate this problem, PTT mediated by photothermal agents (PTAs) has been established as a potential therapeutic technique to boost selectivity and reduce damage to surrounding healthy tissues. Various gold nanoparticles (AuNP) have been effectively utilized as PTAs, mainly using strategies to target cancerous tissue and increase selective thermal damage.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!