A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Comparative proteomics and physiological characterization of Arabidopsis thaliana seedlings in responses to Ochratoxin A. | LitMetric

Comparative proteomics and physiological characterization of Arabidopsis thaliana seedlings in responses to Ochratoxin A.

Plant Mol Biol

Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, People's Republic of China.

Published: July 2013

Ochratoxin A (OTA) is a mycotoxin that is primarily produced by Aspergillus ochraceus and Penicillium verrucosum. This mycotoxin is a contaminant of food and feedstock worldwide and may induce cell death in plants. To investigate the dynamic growth process of Arabidopsis seedlings in response to OTA stress and to obtain a better understanding of the mechanism of OTA toxicity towards Arabidopsis, a comparative proteomics study using 2-DE and MALDI-TOF/TOF MS/MS was performed. Mass spectrometry analysis identified 59 and 51 differentially expressed proteins in seedlings exposed to 25 and 45 μM OTA for 7 days, respectively. OTA treatment decreased root elongation and leaf area, increased anthocyanin accumulation, damaged the photosynthetic apparatus and inhibited photosynthesis. Treatment of the seedlings with 25 μM OTA enhanced energy metabolism, whereas higher concentration of OTA (45 μM) inhibited energy metabolism in the seedlings. OTA treatment caused an increase of ROS, an enhancement of antioxidant enzyme defense responses, disturbance of redox homeostasis and activation of lipid oxidation. Glutamine and S-adenosylmethionine metabolism may also play important roles in the response to OTA. In conclusion, our study provided novel insights regarding the response of Arabidopsis to OTA at the level of the proteome. These results are expected to be highly useful for understanding the physiological responses and dissecting the OTA response pathways in higher plants.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11103-013-0064-xDOI Listing

Publication Analysis

Top Keywords

ota
11
comparative proteomics
8
response ota
8
μm ota
8
ota treatment
8
energy metabolism
8
seedlings
5
proteomics physiological
4
physiological characterization
4
arabidopsis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!