Titanium surface modifications to simultaneously prevent bacterial adhesion but promote bone-cell functions could be highly beneficial for improving implant osseointegration. In the present in vitro study, the effect of sulfonate groups on titanium surfaces was investigated with respect to both S. aureus adhesion and osteoblast functions pertinent to new bone formation. Commercial pure titanium (cpTi) squares were oxydized (Tiox), grafted with poly(sodium styrene sulfonate) groups (Tigraft) by covalent bonding using radical polymerization, and were characterized by infrared spectroscopy (HATR-FTIR) and colorimetry. Bacterial adhesion study showed that Tigraft exhibited high inhibition of S. aureus adhesion S at levels >90 %, when compared to cpTi (P < 0.05). In contrast osteoblasts adhesion was similar on all three titanium surfaces. While the kinetics of cell proliferation were similar on the three titanium surfaces, Alkaline phosphatase-specific activity of osteoblasts cultured on Tigraft surfaces was twofold higher than that observed on either on Tiox or cpTi surfaces (P < 0.01). More importantly, the amount and the distribution of calcium-containing nodules was different. The total area covered by calcium-containing nodules was 2.2-fold higher on the Tigraft as compared to either Tiox or cpTi surfaces (P < 0.01). These results provide evidence that poly(sodium styrene sulfonate) groups grafting on cpTi simultaneously inhibits bacteria adhesion but promote osteoblast function pertinent to new bone formation. Such modified titanium surfaces offer a promising strategy for preventing biofilm-related infections and enhancing osteointegration of implants in orthopaedic and dental applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10856-013-4932-3 | DOI Listing |
Int J Surg Case Rep
January 2025
Department of Cardiology, Tosei General Hospital, Seto, Aichi, Japan.
Introduction: Suture-mediated vascular closure devices have been widely used in catheter ablation, with 0.14-0.3 % incidence of pseudoaneurysm complications.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Department of Cosmetic and Biomaterials Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland.
As the demand for sustainable and innovative solutions in food packaging continues to grow, this study endeavors to introduce a comprehensive exploration of novel active materials. Specifically, we focus on characterizing polylactide-poly(ethylene glycol) (PLA/PEG) films filled with olive leaf extract (OLE; ) obtained via solvent evaporation. Examined properties include surface structure, thermal degradation and mechanical attributes, as well as antibacterial activity.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Center for Micro-Electro Mechanical Systems (CMEMS), Campus Azurém, University of Minho, 4800-058 Guimarães, Portugal.
Indwelling medical devices, such as urinary catheters, often experience bacterial colonization, forming biofilms that resist antibiotics and the host's immune defenses through quorum sensing (QS), a chemical communication system. This study explores the development of antimicrobial coatings by immobilizing acylase, a quorum-quenching enzyme, on sandblasted polydimethylsiloxane (PDMS) surfaces. PDMS, commonly used in medical devices, was sandblasted to increase its surface roughness, enhancing acylase attachment.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China.
, a common pathogen, is capable of producing a significant array of toxins and can develop biofilms or small colony variants (SCVs) to evade detection by the immune system and resist the effects of antibiotics. Its ability to persist for extended periods within host cells has led to increased research interest. This review examines the process of internalization of , highlighting the impact of its toxins and adhesion factors on host cells.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, P. R. China.
Interventional catheters have been widely applied in diagnostics, therapeutics, and other biomedical areas. The complications caused by catheter-related bacterial infection, venous thrombosis, and vascular abrasion have become the main reasons for the failure of interventional therapy. In this study, polyacrylamide/poly(acrylic acid) lubricating copolymer brushes were constructed on the surface of catheters and efficiently resisted the adhesion of blood components and bacteria through hydration and electrostatic repulsion effects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!