DNA gyrase subunit B, that catalyzes the hydrolysis of ATP, is an attractive target for the development of antibacterial drugs. This work is intended to rationalize molecular recognition at DNA gyrase B enzyme - inhibitor binding interface through the evaluation of different scoring functions in finding the correct pose and scoring properly 50 Escherichia coli DNA Gyrase B inhibitors belonging to five different classes. Improving the binding free energy calculation accuracy is further attempted by using rescoring schemes after short molecular dynamic simulations of the obtained docked complexes. These data are then compared with the corresponding experimental enzyme activity data. The results are analyzed from a structural point of view emphasizing the strengths and limitations of the techniques applied in the study.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00894-013-1849-1DOI Listing

Publication Analysis

Top Keywords

dna gyrase
16
molecular recognition
8
gyrase subunit
8
escherichia coli
8
coli dna
8
thermodynamic computational
4
computational approach
4
approach capture
4
capture molecular
4
recognition binding
4

Similar Publications

A microwave-assisted method was utilized to synthesize novel pyranoquinolone derivatives as dual acting topoisomerase II/DNA gyrase inhibitors with apoptosis induction ability for halting lung cancer and staphylococcal infection. Herein, the designed rationale was directed toward mimicking the structural features of both topoisomerase II and DNA gyrase inhibitors as well as endowing them with apoptosis induction potential. The absolute configuration of the series was assigned using X-ray diffraction analysis.

View Article and Find Full Text PDF

Quinolone antibiotics are known for their antibacterial activity by inhibiting the enzyme DNA gyrase. Inspired by their mechanism, new compounds combining 1,4-dihydropyrimidine, a quinolone isostere, with pyridine/pyrimidine rings were synthesized. These derivatives showed antibacterial effects, likely through DNA gyrase inhibition, as supported by molecular docking and dynamics simulations.

View Article and Find Full Text PDF

Piperazine-based compounds have garnered significant attention due to their notable biological and pharmacological activities, making them essential in fine chemical and pharmaceutical applications. In this study, we managed to synthesize a novel hybrid bis-cyanoacrylamide bearing the piperazine core via phenoxymethyl linker and incorporating sulphamethoxazole moiety. The novel compound was fully characterized using different spectral data including 1H-NMR, C-NMR, and FTIR spectroscopy.

View Article and Find Full Text PDF

Background: (MG) poses a growing public health concern due to the escalating antimicrobial resistance. We aimed to assess site-specific MG infection and its correlates and macrolide and fluoroquinolones mutations among men who have sex with men (MSM) in Shenzhen, China.

Methods: Samples were obtained from different anatomic sites of MSM based on their sexual behavior.

View Article and Find Full Text PDF

Unlabelled: Thiosulfate-citrate-bile salts-sucrose (TCBS) agar is a selective and differential media for the enrichment of pathogenic . We observed that an exonuclease VII ( ) mutant of failed to grow on TCBS agar, suggesting that DNA repair mutant strains may be hampered for growth in this selective media. Examination of the selective components of TCBS revealed that bile acids were primarily responsible for toxicity of the mutant.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!