The present work reports a series of novel cationic fullerene derivatives bearing a substituted-quinazolinone moiety as a side arm. Fullerene-quinazolinone conjugates synthesized using the 1,3-dipolar cycloaddition reaction of C60 with azomethine ylides generated from the corresponding Schiff bases of substituted quinazolinone were characterized by elemental analysis, FT-IR, (1)H NMR, (13)C NMR and ESI-MS and screened for their antibacterial activity against Mycobacterium tuberculosis (H 37 Rv strain). All the compounds exhibited significant activity with the most effective having MIC in the range of 1.562-3.125 μg/mL. Compound 9f exhibited good biological activity compared to standard drugs. We developed a computational strategy based on the modeled M. tuberculosis hypoxanthine-guanine phosphoribosyltransferase (HGPRT) using homology modeling techniques and studied its binding pattern with synthesized fullerene derivatives. We then explored the surface geometry of the protein to place the cage adjacent to the active site while optimizing its quinazolinone side arm to establish H bonding with active site residues.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00894-013-1820-1DOI Listing

Publication Analysis

Top Keywords

cationic fullerene
8
mycobacterium tuberculosis
8
tuberculosis hypoxanthine-guanine
8
hypoxanthine-guanine phosphoribosyltransferase
8
fullerene derivatives
8
side arm
8
active site
8
synthesis biological
4
biological evaluation
4
evaluation cationic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!