Epigenetic alterations alone or in combination with genetic mechanisms play a key role in brain tumorigenesis. Glioblastoma is one of the most common, lethal and poor clinical outcome primary brain tumors with extraordinarily miscellaneous epigenetic alterations profile. The aim of this study was to investigate new potential prognostic epigenetic markers such as AREG, HOXA11, hMLH1, NDRG2, NTPX2 and Tes genes promoter methylation, frequency and value for patients outcome. We examined the promoter methylation status using methylation-specific polymerase chain reaction in 100 glioblastoma tissue samples. The value for clinical outcome was calculated using Kaplan-Meier estimation with log-rank test. DNA promoter methylation was frequent event appearing more than 45 % for gene. AREG and HOXA11 methylation status was significantly associated with patient age. HOXA11 showed the tendency to be associated with patient outcome in glioblastomas. AREG gene promoter methylation showed significant correlation with poor patient outcome. AREG methylation remained significantly associated with patient survival in a Cox multivariate model including MGMT promoter methylation status. This study of new epigenetic targets has shown considerably high level of analyzed genes promoter methylation variability in glioblastoma tissue. AREG gene might be valuable marker for glioblastoma patient survival prognosis, however further analysis is needed to clarify the independence and appropriateness of the marker.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11060-013-1133-3DOI Listing

Publication Analysis

Top Keywords

promoter methylation
28
areg hoxa11
12
methylation status
12
associated patient
12
hoxa11 hmlh1
8
hmlh1 ndrg2
8
tes genes
8
epigenetic alterations
8
clinical outcome
8
genes promoter
8

Similar Publications

DNMT3A loss drives a HIF-1-dependent synthetic lethality to HDAC6 inhibition in non-small cell lung cancer.

Acta Pharm Sin B

December 2024

Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China.

encodes a DNA methyltransferase involved in development, cell differentiation, and gene transcription, which is mutated and aberrant-expressed in cancers. Here, we revealed that loss of promotes malignant phenotypes in lung cancer. Based on the epigenetic inhibitor library synthetic lethal screening, we found that small-molecule HDAC6 inhibitors selectively killed -defective NSCLC cells.

View Article and Find Full Text PDF

Genetics of Prader-Willi and Angelman syndromes: 2024 update.

Curr Opin Psychiatry

December 2024

Departments of Psychiatry &, Behavioral Sciences and Pediatrics, University of Kansas Medical Centre, Kansas City, Kansas, United States.

Purpose Of Review: Prader-Willi (PWS) and Angelman (AS) syndromes arise from errors in 15q11-q13 imprinting. This review describes recent advances in genomics and how these expand our understanding of these rare disorders, guiding treatment strategies to improve patient outcomes.

Recent Findings: PWS features include severe infantile hypotonia, failure to thrive, hypogonadism, developmental delay, behavioral and psychiatric features, hyperphagia, and morbid obesity, if unmanaged.

View Article and Find Full Text PDF

The eukaryotic genome is packaged into chromatin, which is composed of a nucleosomal filament that coils up to form more compact structures. Chromatin exists in two main forms: euchromatin, which is relatively decondensed and enriched in transcriptionally active genes, and heterochromatin, which is condensed and transcriptionally repressed . It is widely accepted that chromatin architecture modulates DNA accessibility, restricting the access of sequence-specific, gene-regulatory, transcription factors to the genome.

View Article and Find Full Text PDF

DNA methylation of ACADS promotes immunogenic cell death in hepatocellular carcinoma.

Cell Biosci

January 2025

Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China.

Background: Altered metabolism has become an important characteristic of cancer, and acyl-CoA dehydrogenase short-chain (ACADS), a regulator of lipid synthesis, is involved in carcinogenesis-associated metabolic pathways. DNA methylation is an important mechanism for silencing ACADS in various malignancies. However, the specific role of ACADS in hepatocellular carcinoma (HCC) pathogenesis remains poorly understood.

View Article and Find Full Text PDF

Clear cell renal cell carcinoma (ccRCC) is a highly malignant tumor characterized by a significant propensity for recurrence and metastasis. DNA methylation has emerged as a critical epigenetic mechanism with substantial utility in cancer diagnosis. In this study, multi-omics data were utilized to investigate the target genes regulated by the transcription factor MYC-associated zinc finger protein (MAZ) in ccRCC, leading to the identification of thymidine phosphorylase (TYMP) as a gene with notably elevated expression in ccRCC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!