The structure and dynamics of submicrometre magnetic domains are the main factors determining the physical properties of magnetic materials. Here, we report the first observation of skyrmion-like magnetic nanodomains in a ferromagnetic manganite, La0.5Ba0.5MnO3, using Lorentz transmission electron microscopy (LTEM). The skyrmion-like magnetic domains appear as clusters above the Curie temperature. We found that the repeated reversal of magnetic chirality is caused by thermal fluctuation. The closely spaced clusters exhibit dynamic coupling, and the repeated magnetization reversal becomes fully synchronized with the same chirality. Quantitative analysis of such dynamics was performed by LTEM to directly determine the barrier energy for the magnetization reversal of skyrmion-like nanometre domains. This study is expected to pave the way for further investigation of the unresolved nature and dynamics of magnetic vortex-like nanodomains.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nnano.2013.69 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
School of Physical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India.
Materials exhibiting topological transport properties, such as a large topological Hall resistivity, are crucial for next-generation spintronic devices. Here, we report large topological Hall resistivities in epitaxial supermalloy (NiFeMo) thin films with [100] and [111] orientations grown on single-crystal MgO (100) and AlO (0001) substrates, respectively. While X-ray reciprocal maps confirmed the epitaxial growth of the films, X-ray stress analyses revealed large residual strains in the films, inducing tetragonal distortions of the cubic NiFeMo unit cells.
View Article and Find Full Text PDFACS Nano
July 2024
Max Planck Institute for Solid State Research, Heisenbergstraße 1, Stuttgart 70569, Germany.
The realization of above room-temperature ferromagnetism in the two-dimensional (2D) magnet FeGeTe represents a major advance for the use of van der Waals (vdW) materials in practical spintronic applications. In particular, observations of magnetic skyrmions and related states within exfoliated flakes of this material provide a pathway to the fine-tuning of topological spin textures via 2D material heterostructure engineering. However, there are conflicting reports as to the nature of the magnetic structures in FeGeTe.
View Article and Find Full Text PDFNat Commun
August 2023
Department of Quantum Matter Physics, University of Geneva, 24 Quai Ernest Ansermet, CH-1211, Geneva, Switzerland.
In twisted two-dimensional (2D) magnets, the stacking dependence of the magnetic exchange interaction can lead to regions of ferromagnetic and antiferromagnetic interlayer order, separated by non-collinear, skyrmion-like spin textures. Recent experimental searches for these textures have focused on CrI, known to exhibit either ferromagnetic or antiferromagnetic interlayer order, depending on layer stacking. However, the very strong uniaxial anisotropy of CrI disfavors smooth non-collinear phases in twisted bilayers.
View Article and Find Full Text PDFNat Commun
June 2022
Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany.
Research into practical applications of magnetic skyrmions, nanoscale solitons with interesting topological and transport properties, has traditionally focused on two dimensional (2D) thin-film systems. However, the recent observation of novel three dimensional (3D) skyrmion-like structures, such as hopfions, skyrmion strings (SkS), skyrmion bundles, and skyrmion braids, motivates the investigation of new designs, aiming to exploit the third spatial dimension for more compact and higher performance spintronic devices in 3D or curvilinear geometries. A crucial requirement of such device schemes is the control of the 3D magnetic structures via charge or spin currents, which has yet to be experimentally observed.
View Article and Find Full Text PDFSmall
December 2020
NUSNNI-NanoCore, National University of Singapore, Singapore, 117411, Singapore.
Exploring exotic interface magnetism due to charge transfer and strong spin-orbit coupling has profound application in the future development of spintronic memory. Here, the emergence and tuning of topological Hall effect (THE) from a CaMnO /CaIrO /CaMnO trilayer structure are studied in detail, which suggests the presence of magnetic Skyrmion-like bubbles. First, by tilting the magnetic field direction, the evolution of the Hall signal suggests a transformation of Skyrmions into topologically-trivial stripe domains, consistent with behaviors predicted by micromagnetic simulations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!