Differential scanning calorimetry of gliomas: a new tool in brain cancer diagnostics?

Neurosurgery

‡Department of Neurosurgery, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah; ¶TA Instruments, Inc, Lindon, Utah; §Department of Chemistry, Brigham Young University, Provo, Utah.

Published: August 2013

Background: Thermal stability signatures of complex molecular interactions in biological fluids can be measured using differential scanning calorimetry (DSC). Evaluating the thermal stability of plasma proteomes offers a method of producing a disease-specific "signature" (thermogram) in neoplastic and autoimmune diseases.

Objective: The authors describe the use of DSC with human brain tumor tissue to create unique thermograms for correlation with histological tumor classification.

Methods: Primary brain tumors were classified according to the World Health Organization classification. Tumor samples were digested and assayed by a DSC calorimeter. Experimental thermograms were background subtracted and normalized to the total area of transitions to exclude concentration effects. The resulting thermograms were analyzed by applying 2-state, scaled, Gaussian distributions.

Results: Differences in glioma-specific signatures are described by using calculated parameters at transitions that are characterized, in the equilibrium approximation, by a melting temperature (Tm), an apparent enthalpy change (ΔH), and a scaling factor related to the relative abundance of the materials denatured in the transition (Aw). Thermogram signatures of glioblastoma multiforme and low-grade astrocytomas were differentiated by calculated values of Aw3 and Tm4, those of glioblastoma multiforme and oligodendrogliomas were differentiated by Aw2, ΔH2, ΔH4, and Tm4, and those of low-grade astrocytomas and oligodendroglioma were differentiated by Aw4.

Conclusion: Our preliminary results suggest that solid brain tumors exhibit specific thermogram profiles that are distinguishable among glioma grades. We anticipate that our results will form the conceptual base of a novel diagnostic assay based on tissue thermograms as a complement to currently used histological analysis.

Download full-text PDF

Source
http://dx.doi.org/10.1227/01.neu.0000430296.23799.cdDOI Listing

Publication Analysis

Top Keywords

differential scanning
8
scanning calorimetry
8
thermal stability
8
brain tumors
8
glioblastoma multiforme
8
low-grade astrocytomas
8
calorimetry gliomas
4
gliomas tool
4
brain
4
tool brain
4

Similar Publications

Thio/selenoimidazole Nπ-methyltransferases are an emerging family of enzymes catalyzing the final step in the production of the S/Se-containing histidine-derived antioxidants ovothiol and ovoselenol. These enzymes, prevalent in prokaryotes, show minimal sequence similarity to other methyltransferases, and the structural determinants of their reactivities remain poorly understood. Herein, we report ligand-bound crystal structures of OvsM from the ovoselenol pathway as well as a member of a previously unknown clade of standalone ovothiol-biosynthetic Nπ-methyltransferases, which we have designated OvoM.

View Article and Find Full Text PDF

Collagen, a major component of the extracellular matrix, is crucial for the structural integrity of the Caenorhabditis elegans cuticle. While several proteins involved in collagen biosynthesis have been identified, the complete regulatory network remains unclear. This study investigates the role of CALU-1, an ER-resident calcium-binding protein, in cuticle collagen formation and maintenance.

View Article and Find Full Text PDF

Micelles, liposomes, and solid lipid nanoparticles (SLNs) are promising drug delivery vehicles; however, poor aqueous stability requires post-processing drying methods for maintaining long-term stability. The objective of this study was to compare the potential of lipid-based micelles, liposomes, and SLNs for producing stable re-dispersible spray-dried powders with trehalose or a combination of trehalose and L-leucine. This study provides novel insights into the implementation of spray drying as a technique to enhance long-term stability for these lipid-based nanocarriers.

View Article and Find Full Text PDF

Objectives: This study aimed to synthesize polylactic acid (PLA) nanofibrillar scaffolds loaded with ibuprofen (IBU) using electrospinning (ES) and air-jet spinning (AJS). The scaffolds were evaluated for their physicochemical properties, drug release profiles, and biocompatibility to assess their potential for local analgesic applications.

Methods: Solutions of 10% (/) PLA combined with IBU at concentrations of 10%, 20%, and 30% were processed into nanofibrillar membranes using ES and AJS.

View Article and Find Full Text PDF

This study explores the development and characterization of lyophilized chondroitin sulfate (CHON)-loaded solid lipid nanoparticles (SLN) as an innovative platform for advanced drug delivery. Solid lipid nanoparticles are increasingly recognized for their biocompatibility, their ability to encapsulate diverse compounds, their capacity to enhance drug stability, their bioavailability, and their therapeutic efficacy. CHON, a naturally occurring glycosaminoglycan with anti-inflammatory and regenerative properties, was integrated into SLN formulations using the hot microemulsion technique.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!