Starchy biomass-powered enzymatic biofuel cell based on amylases and glucose oxidase multi-immobilized bioanode.

N Biotechnol

Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan.

Published: June 2013

The present study reports the design of a novel bioanode to directly utilize starch as a fuel in an enzymatic biofuel cell. The enzymatic fuel cell is based on three enzymes (alpha-amylase, glucoamylase and glucose oxidase). The carbon paste electrode containing these three enzymes and tetrathiafulvalene can both saccharize and oxidize starchy biomass. In cyclic voltammetry, catalytic currents were successfully observed with both glucose and starchy white rice used as a substrate. Finally, a membrane-less white rice/O2 biofuel cell was assembled and the electrochemical performance was evaluated. The three enzyme based electrode was used as a bioanode and an immobilized bilirubin oxidase (derived from Myrothecium verrucaria) electrode was used as a biocathode. The biofuel cell delivered an open circuit voltage of 0.522V and power density of up to 99.0 μWcm(-2). Our results show that a readily available fuel can be used for enzymatic fuel cells, and will lead to new designs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nbt.2013.04.005DOI Listing

Publication Analysis

Top Keywords

biofuel cell
16
enzymatic biofuel
8
cell based
8
glucose oxidase
8
fuel enzymatic
8
enzymatic fuel
8
three enzymes
8
cell
5
starchy biomass-powered
4
enzymatic
4

Similar Publications

Microbial fuel cell (MFC) technology has received increased interest as a suitable approach for treating wastewater while producing electricity. However, there remains a lack of studies investigating the impact of inoculum type and hydraulic retention time (HRT) on the efficiency of MFCs in treating industrial saline wastewater. The effect of three different inocula (activated sludge from a fish-canning industry and two domestic wastewater treatment plants, WWTPs) on electrochemical and physicochemical parameters and the anodic microbiome of a two-chambered continuous-flow MFC was studied.

View Article and Find Full Text PDF

TiCT/Au NPs/PPy ternary heterostructure-based intra-capacitive self-powered sensor for DEHP detection.

J Hazard Mater

January 2025

Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China. Electronic address:

Phthalate esters, particularly di(2-ethylhexyl) phthalate (DEHP), are widely used plasticizers found in various consumer products, posing significant environmental and health risks due to their endocrine-disrupting effects. In this study, a novel enzyme-free intra-capacitive biofuel cell self-powered sensor (ICBFC-SPS) was developed. The ICBFC-SPS integrated a ternary heterostructure-based capacitive anode and a cathode with a sensing interface into a single-chamber electrolytic cell.

View Article and Find Full Text PDF

Azo dyes constitute 60-70% of commercially used dyes and are complex, carcinogenic, and mutagenic pollutants that negatively impact soil composition, water bodies, flora, and fauna. Conventional azo dye degradation techniques have drawbacks such as high production and maintenance costs, use of hazardous chemicals, membrane clogging, and sludge generation. Constructed Wetland-Microbial Fuel Cells (CW-MFCs) offer a promising sustainable approach for the bio-electrodegradation of azo dyes from textile wastewater.

View Article and Find Full Text PDF

The global shift towards sustainable energy and bioproducts has intensified research on algae. Renewable green biofuel can address and provide solutions to both energy crisis and climate change challenges. Botryococcus braunii, a bloom forming green microalga, known for its high lipid content and potential for biofuel production has been explored in the present study.

View Article and Find Full Text PDF

GC/MS Fatty Acid Profile of Marine-Derived Actinomycetes from Extreme Environments: Chemotaxonomic Insights and Biotechnological Potential.

Mar Drugs

December 2024

Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, UNOVA University of Lisbon, 2829-516 Caparica, Portugal.

This study investigated the fatty acids (FA) profile of 54 actinomycete strains isolated from marine sediments collected off the Portugal continental coast, specifically from the Estremadura Spur pockmarks field, by GC/MS. Fatty acid methyl esters (FAMEs) were prepared from the ethyl acetate lipidic extracts of these strains and analyzed by gas chromatography-mass spectrometry (GC/MS), with FA identification performed using the NIST library. The identified FAs varied from C12:0 to C20:0, where 32 distinct FAs were identified, including 7 branched-chain fatty acids (BCFAs), 9 odd-chain fatty acids (OCFAs), 8 monounsaturated fatty acids (MUFAs), 6 saturated fatty acids (SFAs), 1 polyunsaturated fatty acid (PUFA), and 1 cyclic chain fatty acid (CCFA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!