Peroxiredoxins are a family of six antioxidant enzymes (PRDX1-6), and may be an alternative system for the pancreatic beta cells to cope with oxidative stress. This study investigated whether the main diabetogenic pro-inflammatory cytokines or the anti-inflammatory cytokine IL-4 modulate PRDXs levels and putative intracellular pathways important for this process in the insulin-producing RINm5F cells. RINm5F cells expressed significant amounts of PRDX1, PRDX3 and PRDX6 enzymes. Only PRDX6 was modulated by cytokines, showing both mRNA and protein down-regulation following incubation of RINm5F cells with TNF-alpha and IFN-gamma but not with IL-1beta. Separately IFN-gamma or TNF-alpha decreased PRDX6 protein but not mRNA levels. The blockage of the JNK signalling and of the calpains and proteasome proteolysis systems restored PRDX6 protein levels. IL-4 alone did not modulate PRDXs levels. However, pre/co-incubation with IL-4 substantially prevented the decrease in PRDX6 induced by pro-inflammatory cytokines. Knockdown of PRDX6 increased susceptibility of RINm5F cells to the deleterious effects of pro-inflammatory cytokines and to oxidative stress. These results show that, from the PRDXs significantly expressed in RINm5F cells, only PRDX6 is modulated by the diabetogenic cytokines IFN-gamma and TNF-alpha. This PRDX6 down-regulation depends on the calpain and proteasome systems and JNK signalling. PRDX6 is an important enzyme for protection against oxidative stress and the interaction between pro- and anti-inflammatory cytokines might be important to determine the antioxidant capacity of the cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mce.2013.04.009DOI Listing

Publication Analysis

Top Keywords

rinm5f cells
24
oxidative stress
16
pro-inflammatory cytokines
12
prdx6
10
cells
9
insulin-producing rinm5f
8
beta cells
8
il-4 modulate
8
modulate prdxs
8
prdxs levels
8

Similar Publications

Pro-inflammatory cytokines, like interleukin-1 beta and interferon gamma, are known to activate signalling pathways causing pancreatic beta cell death and dysfunction, contributing to the onset of diabetes. Targeting cytokine signalling pathways offers a potential strategy to slow or even halt disease progression, reducing reliance on exogenous insulin and improving glucose regulation. This study explores the protective and proliferative effects of breitfussin C (BfC), a natural compound isolated from the Arctic marine hydrozoan Thuiaria breitfussi, on pancreatic beta cells exposed to pro-inflammatory cytokines.

View Article and Find Full Text PDF

Dioxin-Induced PAI-1 Expression: A Novel Pathway to Pancreatic β-Cell Failure in Type 2 Diabetes.

Int J Mol Sci

November 2024

Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea.

Exposure to environment-polluting chemicals (EPCs), which are ligands of the aryl hydrocarbon receptor (AhR), is associated with the development of type 2 diabetes (T2D). This study explores the mechanisms by which AhR ligands contribute to β-cell failure in T2D. Incubation of RINm5F rat pancreatic β-cells with low-dose 2,3,7,8-tetrachlorodibenzodioxin (TCDD), the most potent AhR ligand, inhibited glucose-stimulated insulin secretion (GSIS).

View Article and Find Full Text PDF

Antihyperglycemic effects of a novel polyherbal formula (HF344), comprising fifteen Thai herbal extracts, were elucidated for pharmacological mechanisms and potential for managing type 2 diabetes mellitus, by employing , , and approaches. LC/MS analysis of HF344 extract revealed several phytoconstituents, with piperine identified as the major active compound. HF344 extract significantly enhanced insulin secretion in RINm5F cells and inhibited glucose uptake into the everted sacs of the mouse small intestine in a concentration-dependent manner compared to the control (p < 0.

View Article and Find Full Text PDF

Background/aims: There are evidences that a decrease in the functional activity of pancreatic β-cells under type 2 diabetes conditions may be associated with their senescence, therefore, senotherapy may be a prospective strategy for the diabetes treatment.

Methods: The senotherapeutic potential of peroxiredoxin 6 (PRDX6) was studied in RIN-m5F pancreatic β-cells with streptozotocin-induced senescence by measuring markers, associated with senescence.

Results: Exposure to streptozotocin (STZ) resulted in the senescence of the β-cells.

View Article and Find Full Text PDF

Amylin promoter and transcriptional factors are well-established, inducible factors in the production of the main amyloidogenic pancreatic hormone, human islet amyloid peptide (hIAPP) or amylin. However, posttranscriptional mechanisms driving hIAPP expression in pancreas remain enigmatic, and hence were explored here. The translational assay revealed that both 5' and 3' untranslated regions (UTRs) of hIAPP restricted expression of the luciferase constructs only in constructs driven by the hIAPP promoter.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!