Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The number of ion exchange fibers in development has increased over the last several years. However, few studies have reported the use ion-exchange fibers in drug delivery system. In this study polystyrene nanofiber ion exchangers (PSNIE) were fabricated by electrospinning techniques, crosslinking and sulfonation. The degree of crosslinking and the ion exchange capacity (IEC) were determined. The morphology and diameter of the nanofiber mats were analyzed using scanning electron microscopy (SEM). Five cationic model drugs (dextromethorphan, chlorpheniramine, diphenhydramine, propranolol and salbutamol) were loaded into PSNIE. The loading capacity, release and release kinetics of the exchangers were investigated. PSNIE were successfully prepared by electrospinning and were allowed to crosslink for 10 min, resulting in a maximum IEC of 2.86±0.1 meq/g dry PSNIE. The diameter of the fibers after sulfonation was 464±35 nm. Dextromethorphan provided the highest loading in PSNIE while diphenhydramine gave the highest percentage release in both simulated gastric and intestinal fluid (SGF and SIF). The release kinetics of all drugs in SGF and SIF provided the best fit with the particle diffusion model. Our results showed that the development of a PSNIE-based drug delivery system was successful, and PSNIE were able to control drug release.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijpharm.2013.04.031 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!