Vascular perfusion with fluorescent labeled lectin to study ovarian functions.

Acta Histochem

Department of Animal Sciences, North Dakota State University, Fargo, ND 58102, USA. Electronic address:

Published: October 2013

The aim of this study was to optimize a method to visualize tissue vascularity by perfusing the local vascular bed with a fluorescently labeled lectin, combined with immunofluorescent labeling of selected vascular/tissue markers. Ovaries with the pedicle were obtained from adult non-pregnant ewes. Immediately after collection, the ovarian artery was perfused with phosphate buffered saline (PBS) to remove blood cells, followed by perfusion with PBS containing fluorescently labeled Griffonia (Bandeiraea) simplicifolia (BS1) lectin. Then, half of ovary was fixed in formalin and another half in Carnoy's fixative. BS1 was detected in blood vessels in ovaries fixed in formalin, but not in Carnoy's fixative. Formalin fixed tissue was used for immunofluorescence staining of two markers of tissue function and/or structure, Ki67 and smooth muscle cell actin (SMCA). Ki67 was detected in granulosa and theca cells, luteal and stromal tissue, and a portion of Ki67 staining was co-localized with blood vessels. SMCA was detected in pericytes within the capillary system, in blood vessels in all ovarian compartments, and in the stroma. Thus, blood vessel perfusion with fluorescently labeled lectin combined with immunohistochemistry, microscopy, and imaging techniques provide an excellent tool to study angiogenesis, vascular architecture, and organ structures and function in physiological and pathological conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.acthis.2013.03.006DOI Listing

Publication Analysis

Top Keywords

labeled lectin
12
fluorescently labeled
12
blood vessels
12
lectin combined
8
fixed formalin
8
carnoy's fixative
8
blood
5
vascular perfusion
4
perfusion fluorescent
4
labeled
4

Similar Publications

Heterogeneity in Fluorescence-Stained Sperm Membrane Patterns and Their Dynamic Changes Towards Fertilization in Mice.

Front Biosci (Landmark Ed)

January 2025

Graduate School of Life and Environmental Sciences, Integrated Graduate School of Medicine, Engineering, and Agricultural Sciences, University of Yamanashi, 400-8510 Kofu, Japan.

Background: Sperm represent a heterogeneous population crucial for male reproductive success. Additionally, sperm undergo dynamic changes during maturation and capacitation. Despite these well-established processes, the complex nature of sperm heterogeneity and membrane dynamics remains elusive.

View Article and Find Full Text PDF

In chronic lymphocytic leukemia (CLL), natural killer (NK) cells show a dysfunctional phenotype that correlates with disease progression. Our aim was to restore NK cell functionality in CLL through a specifically targeted IL15-stimulating activity; IL15 targeting could, in fact, potentiate the activity of NK cells and reduce off-target effects. We designed and developed a cis-acting immunocytokine composed of an anti-CD56 single-chain Fragment variable (scFv) and IL15, labeled scFvB1IL15.

View Article and Find Full Text PDF

In-situ profiling of glycosylation on single cells with surface plasmon resonance imaging.

Nat Commun

January 2025

Biosensor National Special Laboratory, Department of Biomedical Engineering, Zhejiang University, Hangzhou, China.

Cellular glycosylation is crucial for cell recognition, signal transduction, and the development of various diseases, especially in tumor initiation, progression, and metastasis. Current glycosylation profiling methods normally involve laborious sample processing and labeling and lack in-situ quantitative analysis. Here, we present a direct optical method to investigate and quantify the glycan expression on single cells based on lectin-glycan kinetic quantification with plasmonic imaging.

View Article and Find Full Text PDF

Background: The wide variability in clinical responses to anti-tumor immunotherapy drives the search for personalized strategies. One of the promising approaches is drug screening using patient-derived models composed of tumor and immune cells. In this regard, the selection of an appropriate in vitro model and the choice of cellular response assay are critical for reliable predictions.

View Article and Find Full Text PDF

Lectin-Mediated Labeling of Alkaline Phosphatase for Enzymatic Silver Deposition-Based Electrochemical Detection of Glycoprotein Tumor Markers.

Anal Chem

January 2025

Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China.

The screening of glycoprotein markers has become an integral part of the in vitro diagnosis of malignant tumors. Herein, an electrochemical method based on alkaline phosphatase (ALP)-mediated enzymatic silver deposition is reported for the highly sensitive detection of glycoprotein tumor markers, in which ALP enzymes are decorated to the glycan moieties of targets via the lectin-carbohydrate interactions. As glycoproteins are conjugated with multiple glycan chains, lectin-mediated labeling can result in the decoration of each target with multiple ALP enzymes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!