Discriminant functions for sex estimation of modern Japanese skulls.

J Forensic Leg Med

Second Biology Section, First Forensic Science Division, National Research Institute of Police Science, 6-3-1 Kashiwanoha, Kashiwa, Chiba 277-0882, Japan.

Published: May 2013

The purpose of this study is to generate a set of discriminant functions in order to estimate the sex of modern Japanese skulls. To conduct the analysis, the anthropological measurement data of 113 individuals (73 males and 40 females) were collected from recent forensic anthropological test records at the National Research Institute of Police Science, Japan. Birth years of the individuals ranged from 1926 to 1979, and age at death was over 19 years for all individuals. A total of 10 anthropological measurements were used in the discriminant function analysis: maximum cranial length, cranial base length, maximum cranial breadth, maximum frontal breadth, basion-bregmatic height, upper facial breadth, bizygomatic breadth, bicondylar breadth, bigonial breadth, and ramal height. As a result, nine discriminant functions were established. The classification accuracy ranged from 79.0 to 89.9% when the measurements of the 113 individuals were substituted into the established functions, from 77.8 to 88.1% when a leave-one-out cross-validation procedure was applied to the data, and from 86.7 to 93.0% when the measurements of 50 new individuals (25 males and 25 females), unrelated to the establishment of the discriminant functions, were used.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jflm.2012.09.023DOI Listing

Publication Analysis

Top Keywords

discriminant functions
16
modern japanese
8
japanese skulls
8
113 individuals
8
individuals males
8
males females
8
years individuals
8
maximum cranial
8
breadth
6
discriminant
5

Similar Publications

In modern knee arthroplasty, surgeons increasingly aim for individualised implant selection based on data-driven decisions to improve patient satisfaction rates. The identification of an implant design that optimally fits to a patient's native kinematic patterns and functional requirements could provide a basis towards subject-specific phenotyping. The goal of this study was to achieve a first step towards identifying easily accessible and intuitive features that allow for discrimination between implant designs based on kinematic data.

View Article and Find Full Text PDF

In terms of safety and emergency response, identifying hazardous gaseous acid chemicals is crucial for ensuring effective evacuation and administering proper first aid. However, current studies struggle to distinguish between different acid vapors and remain in the early stages of development. In this study, we propose an on-site monitorable acid vapor decoder, MOF-808-EDTA-Cu, integrating the robust MOF-808 with Cu-EDTA, functioning as a proton-triggered colorimetric decoder that translates the anionic components of corrosive acids into visible colors.

View Article and Find Full Text PDF

The selection and expression of conspicuous colorations in animals is often related to anti-predation strategies and sociosexual communication. The giant river prawn, Macrobrachium rosenbergii (de Man, 1879) is a species with three male morphotypes that vary in claws' coloration and the size of the animals. It has been suggested that male reproductive quality might be associated to their coloration, but evidence is still conflicting.

View Article and Find Full Text PDF

Background: Ethnic diversity in cancer clinical trials is essential to ensure that therapeutic advances are equitable and broadly applicable in multicultural societies. Yet, missing consensus on the documentation of ethnic origin, partially based on the complexity of the terminology and fear of discrimination, leads to suboptimal patient management of minority populations. Additionally, eligibility criteria, such as stringent laboratory cut-offs, often fail to account for variations across ethnic groups, potentially excluding patients without evidence-based justification.

View Article and Find Full Text PDF

Cyclic voltammetry (CV) has been a powerful technique to provide impactful insights for electrochemical systems, including reaction mechanism, kinetics, diffusion coefficients, etc., in various fields of study, notably energy storage and energy conversion. However, the separation between the faradaic current component of CV and the nonfaradaic current contribution to extract useful information remains a major issue for researchers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!