Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/B978-0-444-52910-7.00010-6 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Sun Yat-Sen University, School of Material Science and Engineering, Nr.135 Xingang Xi Road, 510275, Guangzhou, CHINA.
Degradable features are highly desirable to advance next-generation organic mixed ionic-electronic conductors (OMIECs) for transient bioinspired artificial intelligence devices.It is highly challenging that OMIECs exhibit excellent mixed ionic-electronic behavior and show degradability simultaneously.Specially,in OMIECs,doping is often a tradeoff between structural disorder and charge carrier mobilities.
View Article and Find Full Text PDFJ Neurochem
January 2025
Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Canada.
Highly abundant in neurons, the cellular prion protein (PrP) is an obligatory precursor to the disease-associated misfolded isoform denoted PrP that accumulates in the rare neurodegenerative disorders referred to either as transmissible spongiform encephalopathies (TSEs) or as prion diseases. The ability of PrP to serve as a substrate for this template-mediated conversion process depends on several criteria but importantly includes the presence or absence of certain endoproteolytic events performed at the cell surface or in acidic endolysosomal compartments. The major endoproteolytic events affecting PrP are referred to as α- and β-cleavages, and in this review we outline the sites within PrP at which the cleavages occur, the mechanisms potentially responsible and their relevance to pathology.
View Article and Find Full Text PDFLife Metab
April 2024
State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
Interorgan lipid transport is crucial for organism development and the maintenance of physiological function. Here, we demonstrate that long-chain acyl-CoA synthetase (dAcsl), which catalyzes the conversion of fatty acids into acyl-coenzyme As (acyl-CoAs), plays a critical role in regulating systemic lipid homeostasis. dAcsl deficiency in the fat body led to the ectopic accumulation of neutral lipids in the gut, along with significantly reduced lipoprotein contents in both the fat body and hemolymph.
View Article and Find Full Text PDFCardiol Young
January 2025
Department of Pediatric Cardiovasology, Children's Medical Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
Psychogenic pseudosyncope is one of the primary causes of transient loss of consciousness in children and adolescents, essentially classified as a conversion disorder that significantly impacts patients' quality of life. Clinically, psychogenic pseudosyncope shares certain similarities with vasovagal syncope in terms of pre-syncope symptoms and triggers, making it sometimes difficult to differentiate and easily misdiagnosed. Therefore, placing emphasis upon the characteristics of psychogenic pseudosyncope is crucial for early identification and treatment, which holds significant importance for the mental and psychological health of children and adolescents.
View Article and Find Full Text PDFSmall
January 2025
Institute of Smart City and Intelligent Transportation, Southwest Jiaotong University, Chengdu, 610031, China.
Although carbon-based supercapacitors (SCs) hold the advantages of high-power and large-current characteristics, they are difficult to realize ultrahigh-power density (> 200 kW kg) and maintain almost constant energy density at ultrahigh power. This limitation is mainly due to the difficulty in balancing the structural order related to the electrical conductivity of carbon materials and the structural disorder related to the pore structure. Herein, we design a novel super-structured tubular carbon (SSTC) with a crosslinked porous conductive network to solve the structure order-disorder tradeoff effect in carbon materials.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!