In the last two decades, new techniques that monitor ionic current modulations as single molecules pass through a nanoscale pore have enabled numerous single-molecule studies. While biological nanopores have recently shown the ability to resolve single nucleotides within individual DNA molecules, similar developments with solid-state nanopores have lagged, due to challenges both in fabricating stable nanopores of similar dimensions as biological nanopores and in achieving sufficiently low-noise and high-bandwidth recordings. Here we show that small silicon nitride nanopores (0.8- to 2-nm diameter in 5- to 8-nm-thick membranes) can resolve differences between ionic current signals produced by short (30 base) ssDNA homopolymers (poly(dA), poly(dC), poly(dT)), when combined with measurement electronics that allow a signal-to-noise ratio of better than 10 to be achieved at 1-MHz bandwidth. While identifying intramolecular DNA sequences with silicon nitride nanopores will require further improvements in nanopore sensitivity and noise levels, homopolymer differentiation represents an important milestone in the development of solid-state nanopores.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3724363PMC
http://dx.doi.org/10.1021/nn4014388DOI Listing

Publication Analysis

Top Keywords

solid-state nanopores
12
nanopores
8
ionic current
8
biological nanopores
8
silicon nitride
8
nitride nanopores
8
differentiation short
4
short single-stranded
4
single-stranded dna
4
dna homopolymers
4

Similar Publications

Towards effective functionalization of nanopores/nanochannels: the role of amidation reactions.

Chem Commun (Camb)

January 2025

State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.

In recent years, researchers have drawn inspiration from natural ion channels to develop various artificial nanopores/nanochannels, including solid-state and biological. Through imitating the precise selectivity and single molecule sensing exhibited by natural ion channels, nanopores/nanochannels have been widely used in many fields, such as analyte detection, gene sequencing and so on. In these applications, the surface functionalization of nanopores/nanochannels directly determines the effectiveness in quantitative analysis and single molecule detection.

View Article and Find Full Text PDF

Enhanced Discriminability of Viral Vectors in Viscous Nanopores.

Small Methods

January 2025

Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan.

Achieving safe and efficient gene therapy hinges upon the inspection of genomes enclosed within individual nano-carriers to mitigate potential health risks associated with empty or fragment-filled vectors. Here solid-state nanopore sensing is reported for identifications of intermediate adeno-associated virus (AAV) vectors in liquid. The method exploits the phenomenon of translocation slowdown induced by the viscosity of salt water-organic mixtures.

View Article and Find Full Text PDF

Confining Liquid Electrolytes in a Nitrogen-Rich Nanoporous Carbon Sponge for Superior Lithium-Ion Conduction.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.

Solid-state Li-ion batteries are recognized as highly promising energy storage devices due to their ability to overcome issues related to the inferior cycle life and potential risks of traditional liquid Li-ion batteries. However, developing solid-state electrolytes with fast Li-ion conductivity continues to be a major challenge. In this study, we present a family of quasi-solid-state electrolytes (QSSEs) synthesized by confining liquid electrolytes within a N-rich porous carbon sponge, exhibiting superior Li-ion conduction for solid-state battery applications.

View Article and Find Full Text PDF

Identification of nine mammal monosaccharides by solid-state nanopores.

Sci Rep

December 2024

State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.

Glycans, nucleic acids and proteins are three major classes of natural biopolymers. The extremely high diversity of isomerization makes structural elucidation of glycans the most challenging job among three classes. In the past few years, the single molecule sensing technique based on nanopores has achieved great success in sequencing of DNA.

View Article and Find Full Text PDF

Nanoporous metals have unique potentials for energy applications with a high surface area despite the percolating structure. Yet, a highly corrosive environment is required for the synthesis of porous metals with conventional dealloying methods, limiting the large-scale fabrication of porous structures for reactive metals. In this study, we synthesize a highly reactive Mg nanoporous system through a facile organic solution-based approach without any harsh etching.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!