A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Atomic-scale interfacial band mapping across vertically phased-separated polymer/fullerene hybrid solar cells. | LitMetric

Using cross-sectional scanning tunneling microscope (XSTM) with samples cleaved in situ in an ultrahigh vacuum chamber, this study demonstrates the direct visualization of high-resolution interfacial band mapping images across the film thickness in an optimized bulk heterojunction polymer solar cell consisting of nanoscale phase segregated blends of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl C61 butyric acid methyl ester (PCBM). We were able to achieve the direct observation of the interfacial band alignments at the donor (P3HT)-acceptor (PCBM) interfaces and at the interfaces between the photoactive P3HT:PCBM blends and the poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) anode modification layer with an atomic-scale spatial resolution. The unique advantage of using XSTM to characterize polymer/fullerene bulk heterojunction solar cells allows us to explore simultaneously the quantitative link between the vertical morphologies and their corresponding local electronic properties. This provides an atomic insight of interfacial band alignments between the two opposite electrodes, which will be crucial for improving the efficiencies of the charge generation, transport, and collection and the corresponding device performance of polymer solar cells.

Download full-text PDF

Source
http://dx.doi.org/10.1021/nl400091fDOI Listing

Publication Analysis

Top Keywords

interfacial band
16
solar cells
12
band mapping
8
bulk heterojunction
8
polymer solar
8
band alignments
8
atomic-scale interfacial
4
band
4
mapping vertically
4
vertically phased-separated
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!