Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Due to their low cost, photocatalytic properties, and unique surface chemistry, titanium dioxide (TiO2) nanoparticles are among the most widely used nanoparticles in industry today. Over the last decade, TiO2 nanoparticles have also been chemically and biologically enhanced to create TiO2 bionanoconjugates that can be used for biological applications such as imaging and manipulating desired biological structures. This review particularly focuses on the manner in which these specific chemical and biological modifications in TiO2 bionanoconjugates alter pre and post photoexcitation events to enable precision degradation of intracellular biological structures. Secondary emphasis is given to imaging aspects when necessary to understanding the effects that targeting these bionanoconjugates has on degradation of neighboring biological structures. The advantages of TiO2 bionanoconjugates to standard techniques, as well as future research directions, are also discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jbn.2013.1564 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!