Understanding binding mechanisms between enzymes and potential inhibitors and quantifying protein-ligand affinities in terms of binding free energy is of primary importance in drug design studies. In this respect, several approaches based on molecular dynamics simulations, often combined with docking techniques, have been exploited to investigate the physicochemical properties of complexes of pharmaceutical interest. Even if the geometric properties of a modeled protein-ligand complex can be well predicted by computational methods, it is still challenging to rank with chemical accuracy a series of ligand analogues in a consistent way. In this article, we face this issue calculating relative binding free energies of a focal adhesion kinase, an important target for the development of anticancer drugs, with pyrrolopyrimidine-based ligands having different inhibitory power. To this aim, we employ steered molecular dynamics simulations combined with nonequilibrium work theorems for free energy calculations. This technique proves very powerful when a series of ligand analogues is considered, allowing one to tackle estimation of protein-ligand relative binding free energies in a reasonable time. In our cases, the calculated binding affinities are comparable with those recovered from experiments by exploiting the Michaelis-Menten mechanism with a competitive inhibitor.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcc.23286DOI Listing

Publication Analysis

Top Keywords

molecular dynamics
12
binding free
12
binding affinities
8
steered molecular
8
free energy
8
dynamics simulations
8
simulations combined
8
series ligand
8
ligand analogues
8
relative binding
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!