Sclerotinia sclerotiorum is a filamentous fungal pathogen that can infect many economically important crops and vegetables. Alternative oxidase is the terminal oxidase of the alternative respiratory pathway in fungal mitochondria. The function of alternative oxidase was investigated in the regulation of sensitivity of S. sclerotiorum to two commercial fungicides, azoxystrobin and procymidone which have different fungitoxic mechanisms. Two isolates of S. sclerotiorum were sensitive to both fungicides. Application of salicylhydroxamic acid, a specific inhibitor of alternative oxidase, significantly increased the values of effective concentration causing 50% mycelial growth inhibition (EC50) of azoxystrobin to both S. sclerotiorum isolates, whereas notably decreased the EC50 values of procymidone. In mycelial respiration assay azoxystrobin displayed immediate inhibitory effect on cytochrome pathway capacity, but had no immediate effect on alternative pathway capacity. In contrast, procymidone showed no immediate impact on capacities of both cytochrome and alternative pathways in the mycelia. However, alternative oxidase encoding gene (aox) transcript and protein levels, alternative respiration pathway capacity of the mycelia were obviously increased by pre-treatment for 24 h with both azoxystrobin and procymidone. These results indicate that alternative oxidase was involved in the regulation of sensitivity of S. sclerotiorum to the fungicides azoxystrobin and procymidone, and that both fungicides could affect aox gene expression and the alternative respiration pathway capacity development in mycelia of this fungal pathogen.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12275-013-2534-xDOI Listing

Publication Analysis

Top Keywords

alternative oxidase
24
azoxystrobin procymidone
16
pathway capacity
16
regulation sensitivity
12
fungicides azoxystrobin
12
alternative
10
sclerotinia sclerotiorum
8
sclerotiorum fungicides
8
fungal pathogen
8
sensitivity sclerotiorum
8

Similar Publications

Function of the alternative electron transport chain in the mitosome.

bioRxiv

October 2024

Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA.

Unlabelled: possess a remanent mitochondrion called the mitosome, which lacks DNA, the tricarboxylic acid cycle, a conventional electron transport chain, and ATP synthesis. The mitosome retains ubiquinone and iron sulfur cluster biosynthesis pathways, both of which require protein import that relies on the membrane potential. It was previously proposed that the membrane potential is generated by electrons transferred through an alternative respiratory pathway coupled to a transhydrogenase (TH) that pumps hydrogens out of the mitosome.

View Article and Find Full Text PDF

The titan arum (), commonly known as the corpse flower, produces the largest unbranched inflorescence in the world. Its rare blooms last only a few days and are notable both for their burst of thermogenic activity and for the odor of rotting flesh by which they attract pollinators. Studies on the titan arum can therefor lend insight into the mechanisms underlying thermogenesis as well as the production of sulfur-based volatiles, about which little is known in plants.

View Article and Find Full Text PDF

Mitochondrial AOX1a and an HO feed-forward signalling loop regulate flooding tolerance in rice.

Plant Biotechnol J

November 2024

Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica, and Graduate Institute of Life Science, National Defense Medical Center, Taipei, Taiwan, ROC.

Flooding is a widespread natural disaster that causes tremendous yield losses of global food production. Rice is the only cereal capable of growing in aquatic environments. Direct seeding by which seedlings grow underwater is an important cultivation method for reducing rice production cost.

View Article and Find Full Text PDF

Acanthamoebae, pathogenic free-living amoebae, can cause Granulomatous Amoebic Encephalitis (GAE) and keratitis, and for both types of infection, no adequate treatment options are available. As the metabolism of pathogens is an attractive treatment target, we set out to examine the energy metabolism of Acanthamoeba castellanii and studied the aerobic and anaerobic capacities of the trophozoites. Under anaerobic conditions, or in the presence of inhibitors of the electron-transport chain, A.

View Article and Find Full Text PDF

Analysis of the Respiratory Activity in the Antarctic Yeast M94C9 Reveals the Presence of Respiratory Supercomplexes and Alternative Elements.

Microorganisms

September 2024

Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Circuito Interior, Ciudad Universitaria, Coyoacán, Mexico City C.P. 04510, Mexico.

Article Synopsis
  • - The study investigated the respiratory activities of mitochondrial complexes I, II, and IV in both permeabilized cells and isolated mitochondria, revealing consistent substrate affinities across both settings.
  • - Activity analysis showed that extracted mitochondria from Antarctic yeast retained functionality for key electron transport chain components (Complexes I, II, III, and IV) and formed supercomplexes of I, III, and IV, though traditional methods didn’t reveal the functional states of ATP synthase.
  • - Additional pathways for NADH oxidation were identified, including alternative dehydrogenases, and cyanide exposure pointed to the potential presence of an alternative oxidase contributing to residual cellular respiration.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!