A biorefinery from Nannochloropsis sp. microalga - energy and CO2 emission and economic analyses.

Bioresour Technol

IDMEC - Instituto Superior Técnico, Universidade Técnica de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal.

Published: June 2013

Are microalgae a potential energy source for biofuel production? This paper presents the laboratory results from a Nannochloropsis sp. microalga biorefinery for the production of oil, high-value pigments, and biohydrogen (bioH2). The energy consumption and CO2 emissions involved in the whole process (microalgae cultivation, harvest, dewater, mill, extraction and leftover biomass fermentation) were evaluated. An economic evaluation was also performed. Oil was obtained by soxhlet (SE) and supercritical fluid extraction (SFE). The bioH2 was produced by fermentation of the leftover biomass. The oil production pathway by SE shows the lowest value of energy consumption, 177-245 MJ/MJ(prod), and CO2 emissions, 13-15 kgCO(2)/MJ(prod). Despite consuming and emitting c.a. 20% more than the SE pathway, the oil obtained by SFE, proved to be more economically viable, with a cost of 365€/kg(oil) produced and simultaneously extracting high-value pigments. The bioH2 as co-product may be advantageous in terms of product yield or profit.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2013.03.168DOI Listing

Publication Analysis

Top Keywords

nannochloropsis microalga
8
high-value pigments
8
energy consumption
8
co2 emissions
8
leftover biomass
8
biorefinery nannochloropsis
4
energy
4
microalga energy
4
energy co2
4
co2 emission
4

Similar Publications

The rational dietary ratio of docosahexaenoic acid (DHA) to eicosapentaenoic acid (EPA) can exert neurotrophic and cardiotrophic effects on the human body. The marine microalga produces EPA yet no DHA, and thus, it is considered an ideal EPA-only model to pursue a rational DHA/EPA ratio. In this study, synthetic biological strategy was applied to improve EPA production in .

View Article and Find Full Text PDF

is well known for its potential for biofuel production due to its high lipid content. Numerous omics and biochemical studies have explored the overall molecular mechanisms underlying the responses of sp. to nutrient availability, primarily focusing on lipid metabolism.

View Article and Find Full Text PDF

Genome assembly and annotation of microalga C018.

Microbiol Resour Announc

December 2024

Marine Laboratory, Duke University, Beaufort, North Carolina, USA.

The microalga is an important organism for algae-based biocommodity production of food, feed, and fuel, among other products. Using PacBio Revio, we sequenced, assembled, and annotated a 26.41 Mbp C018 genome.

View Article and Find Full Text PDF

Live cultures, including Nannochloropsis oculata and Brachionus plicatilis, are essential in aquaculture due to its economic and nutritional value for commercial fish species. Pathogens and probiotics can be introduced to aquaculture systems by live feed, with variations in abundance influenced by environmental physicochemical parameters. To investigate this, amplicon sequencing of the V3-V4 region of the 16S rRNA was conducted using Illumina MiSeq to elucidate bacterial abundances and their variations in response to changes in physicochemical parameters in live feed cultures.

View Article and Find Full Text PDF

Melanoma is one of the most malignant forms of skin cancer, characterised by the highest mortality rate among affected patients. This study aims to analyse and compare the effects of lipid extracts from the microalgae () and () on the intra and extracellular proteome of UVA-irradiated melanoma cells using a three-dimensional model. Proteomic analysis revealed that UVA radiation significantly increases the levels of pro-inflammatory proteins in melanoma cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!