Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Whole genome sequence assemblies have been generated for many plants. Annotation of transposable elements (TEs), which constitute the major proportion of genomes and play a significant role in epigenome alterations under stress, has not been given equal importance to that of genes. In this opinion article, we argue that the lack of focus dedicated to the fine-scale characterization of repeat fractions and the absence of consistent methods for their annotation impede our ability to critically understand the influence of TEs on the epigenome with implications in gene expression and non-Mendelian inheritance. Major structural changes occur over an evolutionary time scale. However, epigenetic regulation mediated by TEs can happen in a single generation, thus emphasizing the need for their standardized annotation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.tplants.2013.03.005 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!