Objective: In this retrospective cohort (1998 to 2007), 145,445 singleton live births in Hillsborough, Florida, were analyzed to elucidate the relationship between fetal morbidity and prenatal exposure to six criteria air pollutants.
Methods: This study was based on three linked databases: Florida Hospital Discharge, vital statistics records, and air pollution meteorological data from the Environmental Protection Agency. The primary outcomes of interest were low birth weight, preterm births, and small for gestational age. This study used structural equation modeling and trimester groupings to evaluate the relationship between air pollution and birth outcomes of pregnant residents.
Results: The latent variables of structural equation modeling yielded a significant B value of 0.35, indicating that exposure to the criteria pollutants in pregnancy may have a significant relationship to fetal morbidity.
Conclusion: Exposure to criteria air pollutants in pregnancy is associated with fetal morbidity outcomes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/JOM.0b013e31828df013 | DOI Listing |
J Hazard Mater
January 2025
State Key Laboratory of Advanced Environmental Technology, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou 510640, China.
The effects of micro- and nano-plastics (MNPs) on human health are of global concern because MNPs are ubiquitous, persistent, and potentially toxic, particularly when bound to atmospheric fine particles (PM). Traditional quantitative analysis of MNPs by pyrolysis-gas chromatography-mass spectrometry (Py-GC/MS) is often inaccurate because of false positive signals caused by similar polymers and organic compounds. In this study, a reliable analytical strategy combining HNO digestion and chromatographic peak reconstruction was developed to improve the precision of pyrolysis-gas chromatography-mass spectrometry analysis of multiple MNPs bound to PM.
View Article and Find Full Text PDFSci Rep
January 2025
Acoustics Research Centre, University of Salford, The Crescent, Manchester, M5 4WT, UK.
It is well understood that a significant shift away from fossil fuel based transportation is necessary to limit the impacts of the climate crisis. Electric micromobility modes, such as electric scooters and electric bikes, have the potential to offer a lower-emission alternative to journeys made with internal combustion engine vehicles, and such modes of transport are becoming increasingly commonplace on our streets. Although offering advantages such as reduced air pollution and greater personal mobility, the widespread approval and uptake of electric micromobility is not without its challenges.
View Article and Find Full Text PDFRespirology
January 2025
Department of Respiratory & Sleep Medicine, The Alfred Hospital, Prahran, Victoria, Australia.
Environ Res
January 2025
Environmental Testing and Experiment Center, Chinese Research Academy of Environmental Sciences, Beijing 100012, China. Electronic address:
Bioaugmented slurry technology is a sustainable remediation technology for PAHs-contaminated soil. However, the lack of experimental data on the remediation of complex, actual contaminated soils has hindered the practical application of this technology. This study explored the bioaugmented degradation of PAHs using actual soil slurry with and without the addition of microbial agents in the microscopic world.
View Article and Find Full Text PDFNeuroimage
January 2025
Open Innovation Institute, Kyoto University, Kyoto, Japan; Graduate School of Management, Kyoto University, Kyoto, Japan; Institute of Innovative Research, Tokyo Institute of Technology, Meguro, Tokyo, Japan; ImPACT Program of Council for Science, Technology and Innovation (Cabinet Office, Government of Japan), Chiyoda, Tokyo, Japan; Office for Academic and Industrial Innovation, Kobe University, Kobe, Japan; Brain Impact, Kyoto, Japan.
The impacts of air pollution, local climate, and urbanization on human health have been well-documented in recent studies. In this study, we combined magnetic resonance imaging (MRI) brain analysis with a questionnaire survey on the local environment in 141 healthy middle-aged men and women. Our findings reveal that a favorable environment is positively correlated with gray matter volume (GMV) in the frontal and occipital lobes, cerebellum, and whole brain, as well as with fractional anisotropy (FA) in the fornix (including the fornix stria terminalis), posterior thalamic radiation (PTR), sagittal stratum (SS), and whole brain.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!