Mapping the dynamic repertoire of the resting brain.

Neuroimage

Aix Marseille Université, INSERM, INS UMR S 1106, 27 Bd. Jean Moulin, 13005 Marseille, France.

Published: September 2013

The resting state dynamics of the brain shows robust features of spatiotemporal pattern formation but the actual nature of its time evolution remains unclear. Computational models propose specific state space organization which defines the dynamic repertoire of the resting brain. Nevertheless, methods devoted to the characterization of the organization of brain state space from empirical data still lack and thus preclude comparison of the hypothetical dynamical repertoire of the brain with the actual one. We propose here an algorithm based on set oriented approach of dynamical system to extract a coarse-grained organization of brain state space on the basis of EEG signals. We use it for comparing the organization of the state space of large-scale simulation of brain dynamics with actual brain dynamics of resting activity in healthy subjects. The dynamical skeleton obtained for both simulated brain dynamics and EEG data depicts similar structures. The skeleton comprised chains of macro-states that are compatible with current interpretations of brain functioning as series of metastable states. Moreover, macro-scale dynamics depicts correlation features that differentiate them from random dynamics. We here propose a procedure for the extraction and characterization of brain dynamics at a macro-scale level. It allows for the comparison between models of brain dynamics and empirical measurements and leads to the definition of an effective coarse-grained dynamical skeleton of spatiotemporal brain dynamics.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroimage.2013.04.041DOI Listing

Publication Analysis

Top Keywords

brain dynamics
24
state space
16
brain
13
dynamics
9
dynamic repertoire
8
repertoire resting
8
resting brain
8
organization brain
8
brain state
8
dynamical skeleton
8

Similar Publications

Multiplexed spatial mapping of chromatin features, transcriptome and proteins in tissues.

Nat Methods

January 2025

Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

The phenotypic and functional states of cells are modulated by a complex interactive molecular hierarchy of multiple omics layers, involving the genome, epigenome, transcriptome, proteome and metabolome. Spatial omics approaches have enabled the study of these layers in tissue context but are often limited to one or two modalities, offering an incomplete view of cellular identity. Here we present spatial-Mux-seq, a multimodal spatial technology that allows simultaneous profiling of five different modalities: two histone modifications, chromatin accessibility, whole transcriptome and a panel of proteins at tissue scale and cellular level in a spatially resolved manner.

View Article and Find Full Text PDF

Neurons in the cerebral cortex and hippocampus discharge synchronously in brain state-dependent manner to transfer information. Published studies have highlighted the temporal coordination of neuronal activities between the hippocampus and a neocortical area, however, how the spatial extent of neocortical activity relates to hippocampal activity remains partially unknown. We imaged mesoscopic neocortical activity while recording hippocampal local field potentials in anesthetized and unanesthetized GCaMP-expressing transgenic mice.

View Article and Find Full Text PDF

Our previous in silico data indicated an overrepresentation of the ZF5 motif in the promoters of genes in which circadian oscillations are altered in the ventral hippocampus in the pilocarpine model of temporal lobe epilepsy in mice. In this study, we test the hypothesis that the Zbtb14 protein oscillates in the hippocampus in a diurnal manner and that this oscillation is disrupted by epilepsy. We found that Zbtb14 immunostaining is present in the cytoplasm and cell nuclei.

View Article and Find Full Text PDF

Transcranial magnetic stimulation (TMS) has the potential to yield insights into cortical functions and improve the treatment of neurological and psychiatric conditions. However, its reliability is hindered by a low reproducibility of results. Among other factors, such low reproducibility is due to structural and functional variability between individual brains.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!