Gelled oil particles: a new approach to encapsulate a hydrophobic metallophthalocyanine.

J Colloid Interface Sci

Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto (FCFRP), Universidade de São Paulo, Ribeirão Preto-SP, Brazil.

Published: July 2013

Chloroaluminum phthalocyanine (ClAlPc) is a promising sensitizer molecule for photodynamic therapy, but its hydrophobicity makes it difficult to formulate. In this study, we have efficiently encapsulated ClAlPc into gelled soybean oil particles dispersed in water. 12-Hydroxystearic acid (HSA) and polyethyleneimine (PEI) were the gelling and stabilizing agents, respectively. The preparation process involved hot emulsification above the gelation temperature (Tgel), followed by cooling to room temperature, which gave a colloidal dispersion of gelled particles of oil in aqueous medium. The gelled particles containing ClAlPc had a medium diameter of 280 nm, homogeneous size distribution (polydispersity index ≈0.3) and large positive zeta potential (about +50 mV) and showed a spherical morphology. The gelled oil particle formulations exhibited good physical stability over a 6-month period. ClAlPc interfered with the HSA self-assembly only slightly, and decreased the gelation temperature to a small extent; however it did not affect gelation process of the oil droplets. The amounts of PEI and HSA employed during the preparation allowed us to control particle size and the dispersion stability, a phenomenon that results from complex electrostatic interactions between the positively charged PEI and the negatively charged HSA fibers present on the gelled particles surface. In summary, by using the right ClAlPc, HSA, and PEI proportions, we prepared very stable dispersions of gelled soybean oil particles with excellent ClAlPc encapsulation efficiency. The obtained colloidal formulation of gelled oil particles loaded with ClAlPc shall be very useful for photodynamic therapy protocols.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2013.03.029DOI Listing

Publication Analysis

Top Keywords

oil particles
16
gelled oil
12
gelled particles
12
gelled
8
photodynamic therapy
8
gelled soybean
8
soybean oil
8
gelation temperature
8
particles
7
clalpc
7

Similar Publications

Improved toughening attributes of coix seed oil high internal phase Pickering emulsion gel via the carrageenan and super-deamidated wheat gluten microparticles interfacial network fotified by the acid-heat induction strategy.

Int J Biol Macromol

January 2025

Guangdong Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, Guangdong 528225, China; Department of Food Science, Foshan University, Foshan, Guangdong 528000, China. Electronic address:

The toughening coix seed oil (CSO) high internal phase Pickering emulsion (CSO-HIPES) and gel (CSO-HIPESG) comprised of carrageenan (CR)/super-deamidated-gluten (SDG) micro-particles (CR/SDG) were investigated via acid-heat induction. Results showed polysaccharide natural deep eutectic solvent (P-NADES) by citric acid-glucose-carrageenan ((CGCR), molar ratio at 1:1:0.035) was the crucial for the preparation of SDG (deamidation degree, 99.

View Article and Find Full Text PDF

Construction of magnetic response nanocellulose particles to realize smart antibacterial of pickering emulsion.

Int J Biol Macromol

January 2025

Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, China; School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China. Electronic address:

Smart antibacterial Pickering emulsion can respond to the stimulation of environmental conditions to control the release of antibacterial agents, protecting the quality and safety of food. In this study, FeO was grafted on the cellulose nanocrystal (CNC) via ultrasound-assisted in situ co-precipitation to synthesize the magnetic cellulose nanocomposite particles. When the ratio of FeCl and FeCl was 1.

View Article and Find Full Text PDF

Construction and transcriptomic analysis of salinity-induced lipid-rich flocculent microalgae.

J Environ Manage

January 2025

School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, 316000, China; National & Local Joint Engineering Research Center of Harbor Oil & Gas Storage and Transportation Technology, Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan, 316000, China. Electronic address:

The lack of cost-effective nutrient sources and harvesting methods is currently a major obstacle to the production of sustainable biofuels from microalgae. In this study, Chlorella pyrenoidosa was cultured with saline wastewater in a stirred photobioreactor, and lipid-rich flocculent microalgae particles were successfully constructed. As the influent salinity of the photobioreactor increased from 0% to 3%, the particle size and sedimentation rate of flocculent microalgae particles gradually increased, and the lipid accumulation of microalgae also increased gradually.

View Article and Find Full Text PDF

The impact of animal-based food production on climate change drives the development of plant-based alternatives. We demonstrate the use of colloidal thermogelation on a real nanoemulsion system to create structured gels that could be of interest for thermo-mechanical processing of next-generation plant-based food applications. We use a commercial pea protein isolate (PPI) without further purification to stabilize a 20 vol% peanut oil-in-water nanoemulsion at pH = 7 by high-pressure homogenization (HPH) and demonstrate the temperature induced gelation behavior of the nanoemulsion as a function of the HPH processing parameters.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Mayo Clinic, Jacksonville, FL, USA.

Background: Extracellular vesicles (EVs) carry pathogenic molecules and play a role in the disease spread, including aggregated tau proteins. The Endosomal Sorting Complexes Required for Transport (ESCRT) machinery is responsible for the biogenesis of small EVs (exosomes), thus targeting critical ESCRT molecules can disrupt EV synthesis. We hypothesize that microglia-specific targeting of ESCRT-I molecule Tsg101 suppresses microglia-derived EV-mediated propagation of tau pathology, leading to amelioration of the disease phenotype of the tauopathy mouse model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!