This work investigates the disinfection property of ZnO nanofluids, focusing on H2O2 production and the disinfection activities of ZnO suspensions with different particles/aggregates. The possible disinfection mechanisms of ZnO suspensions are analysed. In this work, a medium mill was used to produce ZnO suspensions with different sizes of particles/aggregates. During the milling process, five ZnO suspension samples (A-E) were produced. X-ray Diffraction (XRD) and Dynamic Light Scattering (DLS) analyses revealed that after milling, the size of ZnO particles/aggregates in the suspensions decreased. Disinfection tests, H2O2 detection assays and fluorescent analyses were used to explore the disinfection activities and mechanism of ZnO suspensions. Disinfection tests results showed that all the produced ZnO suspension exhibited disinfection activity against Escherichia coli. ZnO suspensions with smaller particles/aggregates showed better disinfection activities. The presence of H2O2 in ZnO suspension was analysed. The H2O2 detection assay suggested that there is 1 μM H2O2 in 0.2 g/l ZnO Sample A, while there was no H2O2 present in ZnO Sample E. Though results showed that there was no H2O2 present in ZnO Sample E, Sample E with a size of 93 nm showed the best disinfection activities. Fluorescence tests detected that the interaction between E. coli lipid vesicles and ZnO Sample E was much faster and more efficient. This study firstly demonstrated that ZnO suspensions with different particles/aggregates produced different amount of H2O2. Results suggested that H2O2 is responsible for the disinfection activity of larger ZnO particles/aggregates while the interaction between smaller ZnO particles/aggregates and vesicle lipids is responsible for the disinfection activity of smaller ZnO particles/aggregates.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2012.10.054DOI Listing

Publication Analysis

Top Keywords

zno suspensions
24
zno
18
disinfection activity
16
disinfection activities
16
zno particles/aggregates
16
zno sample
16
disinfection
12
zno suspension
12
h2o2 zno
12
h2o2
10

Similar Publications

Size Distribution of Zinc Oxide Nanoparticles Depending on the Temperature of Electrochemical Synthesis.

Materials (Basel)

January 2025

Department of Mechanical Engineering and Agrophysics, Faculty of Production and Power Engineering, University of Agriculture in Krakow, Balicka Street 116 B, 30-149 Krakow, Poland.

One of the methods for obtaining zinc oxide nanoparticles (ZnO NPs) is electrochemical synthesis. In this study, the anodic dissolution process of metallic zinc in alcohol solutions of LiCl was used to synthesize ZnO NPs. The products were obtained as colloidal suspensions in an electrolyte solution.

View Article and Find Full Text PDF

Soluble starch/zinc oxide nanocomposites could be promising candidates for eco-friendly antimicrobial, food packaging, and a wide range of other utilization. In order to find a new way for the preparation of this kind of nanocomposites, an efficient and energy-saving reaction for the synthesis of soluble starch/zinc oxide nanocomposites has been investigated. The reaction was implemented in a solid state at room temperature without post-reaction calcination.

View Article and Find Full Text PDF

Nanocomposites based on metal nanoparticles (MNP) prepared with mangosteen () peel extract-mediated biosynthesis of Ag/Zn have attracted considerable interest due to their potential for various practical applications. In this study, their role in developing antibacterial protection for rubber cotton gloves is investigated. The process of mangosteen-peel-extract-mediated biosynthesis produced Ag/Zn nanocomposites with respective diameters of 23.

View Article and Find Full Text PDF

Interaction of zinc oxide nanoparticles with soil colloidal suspensions.

Chemosphere

February 2025

Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovakia. Electronic address:

The properties of soil colloids determine the interaction with nanoparticles, their behavior, and destiny in the soil environment including soil solutions. This study examines how several properties of soil colloids, including pH, phosphorus content, clay minerals, and iron oxyhydroxides, influence the interaction with zinc oxide nanoparticles (ZnO-nps). For the experimental setup, four different soils were selected from the temperate climate of central Europe, in Slovakia, exhibiting pH values ranging from 4.

View Article and Find Full Text PDF

Durable Antimicrobial Microstructure Surface (DAMS) Enabled by 3D-Printing and ZnO Nanoflowers.

Langmuir

November 2024

Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States.

Numerous studies have been trying to create nanomaterial-based antimicrobial surfaces to prevent infections due to bacterial growth. One major challenge in real-world applications of these surfaces is their mechanical durability. In this study, we introduce durable antimicrobial microstructure surface (DAMS), which integrates DLP 3D-printed microstructures with zinc oxide (ZnO) nanoflowers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!