The formation of the complex coacervate (CC) phases between gum Arabic (GA) and low molecular weight chitosan (Ch) and the interrelationship between the zeta-potential and viscoelastic properties of the coacervate phase were investigated. The maximum charge difference of biopolymers stock dispersion was displayed in a range of pH between 4.0 and 5.5. Titration experiment between the oppositely charged biopolymers showed that the isoelectric point was found at a biopolymers mass ratio (R[GA:Ch]) of R[5.5:1]. Turbidity, size and ζ-potential of the soluble complexes (SC) showed an interrelation with the complex coacervate yield (CCY). Higher CCY values (82.2-88.1%) were obtained in the range from R[3:1] to R[5.5:1]. Change the R[GA:Ch] in dispersion, make possible to produce CC's phases exhibiting cationic (R[1:1] and R[3:1]), neutral (R[5.5:1]) or anionic (R[9:1] and R[7:1]) charged. All CC's exhibited liquid-viscoelastic behavior at lower frequencies and a crossover between G″ and G' at higher frequencies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.carbpol.2013.02.053 | DOI Listing |
J Voice
January 2025
Department of Otolaryngology - Head and Neck Surgery, University of Utah, Salt Lake City, UT; Department of Surgery, University Utah, Salt Lake City, UT.
Objectives/hypothesis: Vocal fold (VF) injury and chronic inflammation can progress to scarring, which is notoriously difficult to treat. Human amniotic fluid (AF) has potential for VF wound healing in a rabbit model, and we hypothesized that AF would demonstrate wound healing properties superior to hyaluronic acid (HA) over time.
Study Design: Randomized, controlled trial.
Trends Biochem Sci
January 2025
Department of Chemistry, Syracuse University, Syracuse, NY 13244, USA; Department of Biology, Syracuse University, Syracuse, NY 13244, USA; Bioinspired Institute, Syracuse University, Syracuse, NY 13244, USA; Interdisciplinary Neuroscience Program, Syracuse University, Syracuse, NY 13244, USA. Electronic address:
Protein quality control (PQC) mechanisms including the ubiquitin (Ub)-proteasome system (UPS), autophagy, and chaperone-mediated refolding are essential to maintain protein homeostasis in cells. Recent studies show that these PQC mechanisms are further modulated by biomolecular condensates that sequester PQC components and compartmentalize reactions. Accumulating evidence points towards the PQC machinery playing a pivotal role in regulating the assembly, disassembly, and viscoelastic properties of several condensates.
View Article and Find Full Text PDFFood Chem
December 2024
College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; China-Ireland International Cooperation Centre for Food Material Science and Structural Design, Fuzhou 350002, China.
This work investigated the effects of curdlan gum-guar gum composite microgels (CG microgels) as a fat replacer on the gel properties, water distribution, and microstructures of pork meat batters, using techniques including rheometry, SEM, and LF-NMR. Between 55 °C and 80 °C, the addition of 30 % CG microgels enhanced the viscoelastic response of pork meat batters. Additionally, the CG microgels reduced cooking loss from 18.
View Article and Find Full Text PDFBiomed Mater
January 2025
Department of Orthopaedic Surgery, University of Connecticut, Chemical, Materials & Biomolecular Engineering MC-3711, ARB7-E7018, 263 Farmington Avenue, Farmington, CT 06032, USA, Storrs, Connecticut, 06269, UNITED STATES.
Articular cartilage and osteochondral defect repair and regeneration presents significant challenges to the field of tissue engineering (TE). TE and regenerative medicine strategies utilizing natural and synthetic-based engineered scaffolds have shown potential for repair, however, they face limitations in replicating the intricate native microenvironment and structure to achieve optimal regenerative capacity and functional recovery. Herein, we report the development of a cartilage extracellular matrix (ECM) as a printable biomaterial for tissue regeneration.
View Article and Find Full Text PDFNat Nanotechnol
January 2025
ICFO-Institut de Ciències Fotòniques, Castelldefels, The Barcelona Institute of Science and Technology, Barcelona, Spain.
Quantifying the mechanical response of the biological milieu (such as the cell's interior) and complex fluids (such as biomolecular condensates) would enable a better understanding of cellular differentiation and aging and accelerate drug discovery. Here we present time-shared optical tweezer microrheology to determine the frequency- and age-dependent viscoelastic properties of biological materials. Our approach involves splitting a single laser beam into two near-instantaneous time-shared optical traps to carry out simultaneous force and displacement measurements and quantify the mechanical properties ranging from millipascals to kilopascals across five decades of frequency.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!