Background: Sulfur mustard (SM) is an alkylating agent that induces short and long term toxicity on various organs. The aim of this study was to assess the long-term psychological symptoms among samples of exposed to sulfur mustard gas compared with unexposed civilians 20 years after exposure.
Methods: This historical cohort study was conducted on 495 civilians of Sardasht and Rabat in two age matched groups, including 367 sulfur mustard exposed participants from Sardasht and 128 unexposed subjects from Rabat. Psychological symptoms was assessed using the Symptom Check List-90 Revised (SCL-90-R) including measures of somatization, obsessive-compulsive, interpersonal sensitivity, depression, anxiety, hostility, phobic anxiety, paranoid ideation, and psychoticism providing three global distress indices namely: Global Severity Index (GSI), Positive Symptom Total (PST) and Positive Symptom Distress Index (PSDI). Comparison was made between exposed and unexposed civilians.
Results: There were significant differences in somatization (P = 0.002), obsessive-compulsive (P = 0.031), depression (P = 0.007), anxiety (P = 0.042), and hostility (P = 0.002), between the exposed and unexposed groups. In addition there were significant differences between two groups concerning the GSI (P = 0.045) and the PSDI (P < 0.001). The differences between two groups in other subscales were not significant.
Conclusions: The findings from this study showed that civilians who exposed to sulfur mustard gas were suffering from a number of psychological symptoms even 20 years after exposure. Providing mental health services and more resource allocation for this community are highly recommended.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3641015 | PMC |
http://dx.doi.org/10.1186/1477-7525-11-69 | DOI Listing |
Free Radic Biol Med
January 2025
Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China.. Electronic address:
Sulfur mustard (SM) is a major toxic chemical threat to public health. Mitochondrial dysfunction is considered a critical contributing factor to mustard agent-induced damage. The brain is vulnerable to SM, which can lead to various types of acute and long-term psychiatric distress after exposure, but the neurotoxic mechanisms of SM, let alone drug candidates, are seldom studied.
View Article and Find Full Text PDFClin Trials
January 2025
Department of Urology, University of Rochester Medical Center, Rochester, NY, USA.
Clinical trials of drugs, procedures, and other therapies play a crucial role in advancing medical science by evaluating the safety, efficacy, and optimal use of medical interventions. The design and implementation of these trials have evolved significantly over time, reflecting advancements in medicine, ethics, and methodology. Early historical examples, such as King Nebuchadnezzar II's and his captives' dietary experiment and Ambroise Paré's treatment of gunshot wounds, laid some foundational principles of trial design.
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran.
Sulfur mustard (SM) is a chemical warfare agent that increases oxidative stress in veterans. The literature assessing oxidant/antioxidant parameters in SM-exposed veterans contains conflicting results. A total of 11 relevant studies were identified and screened.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2025
Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, United States.
Purpose: Sulfur mustard gas (SM) exposure to eyes causes multiple corneal injuries including stromal cell loss in vivo. However, mechanisms mediating stromal cell loss/death remains elusive. This study sought to test the novel hypothesis that SM-induced toxicity to human corneal stromal fibroblasts involves ferroptosis mechanism via p38 MAPK signaling.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Eberhard Karls Universität Tübingen: Eberhard Karls Universitat Tubingen, Institut für Organische Chemie, Auf der Morgenstelle 18, 72076, Tübingen, GERMANY.
The direct incorporation of borondipyrromethene (BODIPY) subunits into the structural backbone of covalent organic frameworks (COFs) gives facile access to porous photosensitizers but is still a challenging task. Here, we introduce β‑ketoenamine-linked BDP‑TFP‑COF, which crystallizes in AA‑stacking mode with hcb topology. A comprehensive characterization reveals high crystallinity and enhanced stability in a variety of solvents, excellent mesoporosity (SABET = 1042 m2 g-1), broad light absorption in the visible region, and red emission upon the exfoliation of few-layer COF nanosheets.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!