Background: ZASC1 is a zinc finger-containing transcription factor that was previously shown to bind to specific DNA binding sites in the Moloney murine leukemia virus (Mo-MuLV) promoter and is required for efficient viral mRNA transcription (J. Virol. 84:7473-7483, 2010).
Methods: To determine whether this cellular factor influences Mo-MuLV replication and viral disease pathogenesis in vivo, we generated a ZASC1 knockout mouse model and completed both early infection and long term disease pathogenesis studies.
Results: Mice lacking ZASC1 were born at the expected Mendelian ratio and showed no obvious physical or behavioral defects. Analysis of bone marrow samples revealed a specific increase in a common myeloid progenitor cell population in ZASC1-deficient mice, a result that is of considerable interest because osteoclasts derived from the myeloid lineage are among the first bone marrow cells infected by Mo-MuLV (J. Virol. 73: 1617-1623, 1999). Indeed, Mo-MuLV infection of neonatal mice revealed that ZASC1 is required for efficient early virus replication in the bone marrow, but not in the thymus or spleen. However, the absence of ZASC1 did not influence the timing of subsequent tumor progression or the types of tumors resulting from virus infection.
Conclusions: These studies have revealed that ZASC1 is important for myeloid cell differentiation in the bone marrow compartment and that this cellular factor is required for efficient Mo-MuLV replication in this tissue at an early time point post-infection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3654992 | PMC |
http://dx.doi.org/10.1186/1743-422X-10-130 | DOI Listing |
FASEB J
December 2024
Antibody and Vaccine Group, Faculty of Medicine, Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton, Southampton, UK.
Osteosarcoma is the most common primary bone cancer, occurring frequently in children and young adults. Patients are treated with surgery and multi-agent chemotherapy, and despite the introduction of mifamurtide in 2011, there has been little improvement in survival for decades. 3-dimensional models offer the potential to understand the complexity of the osteosarcoma tumor microenvironment and aid in developing new treatment approaches.
View Article and Find Full Text PDFJAMA Oncol
December 2024
Mayo Clinic, Departments of Oncology and Molecular Medicine, Rochester, Minnesota.
Importance: Molecular techniques, including next-generation sequencing, genomic copy number profiling, fusion transcript detection, and genomic DNA methylation arrays, are now indispensable tools for the workup of central nervous system (CNS) tumors. Yet there remains a great deal of heterogeneity in using such biomarker testing across institutions and hospital systems. This is in large part because there is a persistent reluctance among third-party payers to cover molecular testing.
View Article and Find Full Text PDFPLoS One
December 2024
Department of Research and Development, Jinan Perfect Biological Technology Co., LTD, Jinan, Shandong, China.
This study aimed to find whether oral administration of calf bone marrow hydrolysate liposomes (CBMHL) can improve renal anemia. Calf bone marrow was defatted, papain hydrolyzed, liposomalized and lyophilized. Its hematopoietic ability was proved by the colony formation experiment of umbilical cord blood hematopoietic stem cells in vitro.
View Article and Find Full Text PDFDrug Dev Ind Pharm
December 2024
Department of Veterinary Pathology, College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, 125004, India.
Objective: Genotoxicity assays include micronucleus test, comet assay, and malformed sperm head used to investigate the protective potential of quercetin and quercetin nanoparticles against imidacloprid-induced genotoxicity in Swiss albino mice.
Method: The ionic gelation procedure was used to synthesize the quercetin nanoparticles and characterized for their hydrodynamic diameter, zeta potential, SEM, TEM, FT-IR, and encapsulation efficiency. Total 48 mice were taken in eight groups with six animals in each group.
JCI Insight
December 2024
Lunenfeld-Tanenbaum Research Institute, Sinai Health System, University of Toronto, Toronto, Canada.
Glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide 1 (GLP-1) are gut-derived peptide hormones that potentiate glucose-dependent insulin secretion. The clinical development of GIP receptor (GIPR)-GLP-1 receptor (GLP-1R) multi-agonists exemplified by tirzepatide and emerging GIPR antagonist-GLP-1R agonist therapeutics such as maritide is increasing interest in the extra-pancreatic actions of incretin therapies. Both GLP-1 and GIP modulate inflammation, with GLP-1 also acting locally to alleviate gut inflammation in part through anti-inflammatory actions on GLP-1R+ intestinal intraepithelial lymphocytes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!